---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad ---------------------------------------------------------------------------------------------------- import logic.connectives.prop -- General properties of relations -- ------------------------------- namespace relation abbreviation reflexive {T : Type} (R : T → T → Type) : Type := ∀x, R x x abbreviation symmetric {T : Type} (R : T → T → Type) : Type := ∀x y, R x y → R y x abbreviation transitive {T : Type} (R : T → T → Type) : Type := ∀x y z, R x y → R y z → R x z namespace is_reflexive inductive class {T : Type} (R : T → T → Type) : Prop := | mk : reflexive R → class R abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) : reflexive R := class_rec (λu, u) C abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} : reflexive R := class_rec (λu, u) C end is_reflexive namespace is_symmetric inductive class {T : Type} (R : T → T → Type) : Prop := | mk : symmetric R → class R abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y : T⦄ (H : R x y) : R y x := class_rec (λu, u) C x y H abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y : T⦄ (H : R x y) : R y x := class_rec (λu, u) C x y H end is_symmetric namespace is_transitive inductive class {T : Type} (R : T → T → Type) : Prop := | mk : transitive R → class R abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y z : T⦄ (H1 : R x y) (H2 : R y z) : R x z := class_rec (λu, u) C x y z H1 H2 abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y z : T⦄ (H1 : R x y) (H2 : R y z) : R x z := class_rec (λu, u) C x y z H1 H2 end is_transitive -- Congruence for unary and binary functions -- ----------------------------------------- namespace congr inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) (f : T1 → T2) : Prop := | mk : (∀x y, R1 x y → R2 (f x) (f y)) → class R1 R2 f abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} {f : T1 → T2} (C : class R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := class_rec (λu, u) C x y theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) (f : T1 → T2) {C : class R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := class_rec (λu, u) C x y -- for binary functions inductive class2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) {T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop := | mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) → class2 R1 R2 R3 f abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {f : T1 → T2 → T3} (C : class2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ : R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) := class2_rec (λu, u) C x1 y1 x2 y2 -- ### general tools to build instances theorem compose {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {g : T2 → T3} (C2 : congr.class R2 R3 g) {{T1 : Type}} {R1 : T1 → T1 → Prop} {f : T1 → T2} (C1 : congr.class R1 R2 f) : congr.class R1 R3 (λx, g (f x)) := mk (λx1 x2 H, app C2 (app C1 H)) theorem compose21 {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {T4 : Type} {R4 : T4 → T4 → Prop} {g : T2 → T3 → T4} (C3 : congr.class2 R2 R3 R4 g) ⦃T1 : Type⦄ {R1 : T1 → T1 → Prop} {f1 : T1 → T2} (C1 : congr.class R1 R2 f1) {f2 : T1 → T3} (C2 : congr.class R1 R3 f2) : congr.class R1 R4 (λx, g (f1 x) (f2 x)) := mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H)) theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : relation.reflexive R2) ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) : class R1 R2 (λu : T1, c) := mk (λx y H1, H c) end congr end relation -- TODO: notice these can't be in the congr namespace, if we want it visible without -- using congr. theorem congr_const [instance] {T2 : Type} (R2 : T2 → T2 → Prop) {C : relation.is_reflexive.class R2} ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) : relation.congr.class R1 R2 (λu : T1, c) := relation.congr.const R2 (relation.is_reflexive.app C) R1 c theorem congr_trivial [instance] {T : Type} (R : T → T → Prop) : relation.congr.class R R (λu, u) := relation.congr.mk (λx y H, H) -- Relations that can be coerced to functions / implications -- --------------------------------------------------------- namespace relation namespace mp_like inductive class {R : Type → Type → Prop} {a b : Type} (H : R a b) : Prop := | mk {} : (a → b) → @class R a b H definition app {R : Type → Type → Prop} {a : Type} {b : Type} {H : R a b} (C : class H) : a → b := class_rec (λx, x) C definition infer ⦃R : Type → Type → Prop⦄ {a : Type} {b : Type} (H : R a b) {C : class H} : a → b := class_rec (λx, x) C end mp_like -- Notation for operations on general symbols -- ------------------------------------------ namespace operations definition refl := is_reflexive.infer definition symm := is_symmetric.infer definition trans := is_transitive.infer definition mp := mp_like.infer end operations namespace symbols postfix `⁻¹`:100 := operations.symm infixr `⬝`:75 := operations.trans end symbols end relation