import data.prod data.unit open prod inductive tree (A : Type) : Type := | node : A → forest A → tree A with forest : Type := | nil : forest A | cons : tree A → forest A → forest A namespace manual definition tree.below.{l₁ l₂} (A : Type.{l₁}) (C₁ : tree A → Type.{l₂}) (C₂ : forest A → Type.{l₂}) (t : tree A) : Type.{max 1 l₂} := @tree.rec_on A (λ t : tree A, Type.{max 1 l₂}) (λ t : forest A, Type.{max 1 l₂}) t (λ (a : A) (f : forest A) (r : Type.{max 1 l₂}), prod.{l₂ (max 1 l₂)} (C₂ f) r) unit.{max 1 l₂} (λ (t : tree A) (f : forest A) (rt : Type.{max 1 l₂}) (rf : Type.{max 1 l₂}), prod.{(max 1 l₂) (max 1 l₂)} (prod.{l₂ (max 1 l₂)} (C₁ t) rt) (prod.{l₂ (max 1 l₂)} (C₂ f) rf)) definition forest.below.{l₁ l₂} (A : Type.{l₁}) (C₁ : tree A → Type.{l₂}) (C₂ : forest A → Type.{l₂}) (f : forest A) : Type.{max 1 l₂} := @forest.rec_on A (λ t : tree A, Type.{max 1 l₂}) (λ t : forest A, Type.{max 1 l₂}) f (λ (a : A) (f : forest A) (r : Type.{max 1 l₂}), prod.{l₂ (max 1 l₂)} (C₂ f) r) unit.{max 1 l₂} (λ (t : tree A) (f : forest A) (rt : Type.{max 1 l₂}) (rf : Type.{max 1 l₂}), prod.{(max 1 l₂) (max 1 l₂)} (prod.{l₂ (max 1 l₂)} (C₁ t) rt) (prod.{l₂ (max 1 l₂)} (C₂ f) rf)) definition tree.brec_on.{l₁ l₂} (A : Type.{l₁}) (C₁ : tree A → Type.{l₂}) (C₂ : forest A → Type.{l₂}) (t : tree A) (F₁ : Π (t : tree A), tree.below A C₁ C₂ t → C₁ t) (F₂ : Π (f : forest A), forest.below A C₁ C₂ f → C₂ f) : C₁ t := have general : prod.{l₂ (max 1 l₂)} (C₁ t) (tree.below A C₁ C₂ t), from @tree.rec_on A (λ (t' : tree A), prod.{l₂ (max 1 l₂)} (C₁ t') (tree.below A C₁ C₂ t')) (λ (f' : forest A), prod.{l₂ (max 1 l₂)} (C₂ f') (forest.below A C₁ C₂ f')) t (λ (a : A) (f : forest A) (r : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)), have b : tree.below A C₁ C₂ (tree.node a f), from r, have c : C₁ (tree.node a f), from F₁ (tree.node a f) b, prod.mk.{l₂ (max 1 l₂)} c b) (have b : forest.below A C₁ C₂ (forest.nil A), from unit.star.{max 1 l₂}, have c : C₂ (forest.nil A), from F₂ (forest.nil A) b, prod.mk.{l₂ (max 1 l₂)} c b) (λ (t : tree A) (f : forest A) (rt : prod.{l₂ (max 1 l₂)} (C₁ t) (tree.below A C₁ C₂ t)) (rf : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)), have b : forest.below A C₁ C₂ (forest.cons t f), from prod.mk.{(max 1 l₂) (max 1 l₂)} rt rf, have c : C₂ (forest.cons t f), from F₂ (forest.cons t f) b, prod.mk.{l₂ (max 1 l₂)} c b), pr₁ general definition forest.brec_on.{l₁ l₂} (A : Type.{l₁}) (C₁ : tree A → Type.{l₂}) (C₂ : forest A → Type.{l₂}) (f : forest A) (F₁ : Π (t : tree A), tree.below A C₁ C₂ t → C₁ t) (F₂ : Π (f : forest A), forest.below A C₁ C₂ f → C₂ f) : C₂ f := have general : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f), from @forest.rec_on A (λ (t' : tree A), prod.{l₂ (max 1 l₂)} (C₁ t') (tree.below A C₁ C₂ t')) (λ (f' : forest A), prod.{l₂ (max 1 l₂)} (C₂ f') (forest.below A C₁ C₂ f')) f (λ (a : A) (f : forest A) (r : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)), have b : tree.below A C₁ C₂ (tree.node a f), from r, have c : C₁ (tree.node a f), from F₁ (tree.node a f) b, prod.mk.{l₂ (max 1 l₂)} c b) (have b : forest.below A C₁ C₂ (forest.nil A), from unit.star.{max 1 l₂}, have c : C₂ (forest.nil A), from F₂ (forest.nil A) b, prod.mk.{l₂ (max 1 l₂)} c b) (λ (t : tree A) (f : forest A) (rt : prod.{l₂ (max 1 l₂)} (C₁ t) (tree.below A C₁ C₂ t)) (rf : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)), have b : forest.below A C₁ C₂ (forest.cons t f), from prod.mk.{(max 1 l₂) (max 1 l₂)} rt rf, have c : C₂ (forest.cons t f), from F₂ (forest.cons t f) b, prod.mk.{l₂ (max 1 l₂)} c b), pr₁ general end manual