import logic set_option pp.notation false constant A : Type constants a b : A constant P : A → Type constant H₁ : a = a constant H₂ : P a constant H₃ : a = b constant f {A : Type} (a : A) : a = a eval eq.rec H₂ (f a) eval eq.rec H₂ H₁ eval eq.rec H₂ H₃ eval eq.rec H₂ (eq.refl a) eval λ (A : Type) (a b : A) (H₁ : a = a) (P : A → Prop) (H₂ : P a) (H₃ : a = a) (c : A), eq.rec (eq.rec H₂ H₁) H₃ check @eq.rec A a P H₂ a check λ H : a = a, H₂ inductive to_type {B : Type} : B → Type := mk : Π (b : B), to_type b definition tst1 : to_type (λ H : a = a, H₂) := to_type.mk (@eq.rec A a P H₂ a) check to_type.mk(λ H : a = a, H₂) check to_type.mk(@eq.rec A a P H₂ a) check to_type.mk(λ H : a = a, H₂) = to_type.mk(@eq.rec A a P H₂ a) check to_type.mk(eq.rec H₂ H₁) = to_type.mk(H₂) check to_type.mk(eq.rec H₂ (f a)) = to_type.mk(H₂)