/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.vector Author: Floris van Doorn, Leonardo de Moura -/ import data.nat.basic open nat prod inductive vector (A : Type) : nat → Type := | nil {} : vector A zero | cons : Π {n}, A → vector A n → vector A (succ n) namespace vector notation a :: b := cons a b notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l variables {A B C : Type} protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n) | is_inhabited 0 := inhabited.mk nil | is_inhabited (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n)) theorem vector0_eq_nil : ∀ (v : vector A 0), v = nil | vector0_eq_nil nil := rfl definition head : Π {n : nat}, vector A (succ n) → A | head (a::v) := a definition tail : Π {n : nat}, vector A (succ n) → vector A n | tail (a::v) := v theorem head_cons {n : nat} (h : A) (t : vector A n) : head (h :: t) = h := rfl theorem tail_cons {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t := rfl theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v | eta (a::v) := rfl definition last : Π {n : nat}, vector A (succ n) → A | last (a::nil) := a | last (a::v) := last v theorem last_singleton (a : A) : last (a :: nil) = a := rfl theorem last_cons {n : nat} (a : A) (v : vector A (succ n)) : last (a :: v) = last v := rfl definition const : Π (n : nat), A → vector A n | const 0 a := nil | const (succ n) a := a :: const n a theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a := rfl theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a | last_const 0 a := rfl | last_const (succ n) a := last_const n a definition map (f : A → B) : Π {n : nat}, vector A n → vector B n | map nil := nil | map (a::v) := f a :: map v theorem map_nil (f : A → B) : map f nil = nil := rfl theorem map_cons {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t := rfl definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n | map2 nil nil := nil | map2 (a::va) (b::vb) := f a b :: map2 va vb theorem map2_nil (f : A → B → C) : map2 f nil nil = nil := rfl theorem map2_cons {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) : map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ := rfl -- Remark: why do we need to provide indices? definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m) | 0 m nil w := w | (succ n) m (a::v) w := a :: (append v w) theorem append_nil {n : nat} (v : vector A n) : append nil v = v := rfl theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) : append (h::t) v = h :: (append t v) := rfl definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n | unzip nil := (nil, nil) | unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) theorem unzip_nil : unzip (@nil (A × B)) = (nil, nil) := rfl theorem unzip_cons {n : nat} (a : A) (b : B) (v : vector (A × B) n) : unzip ((a, b) :: v) = (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) := rfl definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n | zip nil nil := nil | zip (a::va) (b::vb) := ((a, b) :: zip va vb) theorem zip_nil_nil : zip (@nil A) (@nil B) = nil := rfl theorem zip_cons_cons {n : nat} (a : A) (b : B) (va : vector A n) (vb : vector B n) : zip (a::va) (b::vb) = ((a, b) :: zip va vb) := rfl theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂) | 0 nil nil := rfl | (succ n) (a::va) (b::vb) := calc unzip (zip (a :: va) (b :: vb)) = (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl ... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : {unzip_zip va vb} ... = (a :: va, b :: vb) : rfl theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v | 0 nil := rfl | (succ n) ((a, b) :: v) := calc zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v))) = (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl ... = (a, b) :: v : {zip_unzip v} /- Concat -/ definition concat : Π {n : nat}, vector A n → A → vector A (succ n) | concat nil a := a :: nil | concat (b::v) a := b :: concat v a theorem concat_nil (a : A) : concat nil a = a :: nil := rfl theorem concat_cons {n : nat} (b : A) (v : vector A n) (a : A) : concat (b :: v) a = b :: concat v a := rfl theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a | 0 nil a := rfl | (succ n) (b::v) a := calc last (concat (b::v) a) = last (concat v a) : rfl ... = a : last_concat v a end vector