/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Cones -/ import ..nat_trans open functor nat_trans eq equiv is_trunc namespace category structure cone_obj {I C : Precategory} (F : I ⇒ C) := (c : C) (η : constant_functor I c ⟹ F) local attribute cone_obj.c [coercion] variables {I C : Precategory} {F : I ⇒ C} {x y z : cone_obj F} structure cone_hom (x y : cone_obj F) := (f : x ⟶ y) (p : Πi, cone_obj.η y i ∘ f = cone_obj.η x i) local attribute cone_hom.f [coercion] definition cone_id [constructor] (x : cone_obj F) : cone_hom x x := cone_hom.mk id (λi, !id_right) definition cone_comp [constructor] (g : cone_hom y z) (f : cone_hom x y) : cone_hom x z := cone_hom.mk (cone_hom.f g ∘ cone_hom.f f) abstract λi, by rewrite [assoc, +cone_hom.p] end definition is_hprop_hom_eq [instance] [priority 1001] {ob : Type} [C : precategory ob] {x y : ob} (f g : x ⟶ y) : is_hprop (f = g) := _ theorem cone_hom_eq (f f' : cone_hom x y) (q : cone_hom.f f = cone_hom.f f') : f = f' := begin induction f, induction f', esimp at *, induction q, apply ap (cone_hom.mk f), apply @is_hprop.elim, apply pi.is_trunc_pi, intro x, apply is_trunc_eq, -- type class fails end variable (F) definition precategory_cone [instance] [constructor] : precategory (cone_obj F) := @precategory.mk _ cone_hom abstract begin intro x y, assert H : cone_hom x y ≃ Σ(f : x ⟶ y), Πi, cone_obj.η y i ∘ f = cone_obj.η x i, { fapply equiv.MK, { intro f, induction f, constructor, assumption}, { intro v, induction v, constructor, assumption}, { intro v, induction v, reflexivity}, { intro f, induction f, reflexivity}}, apply is_trunc.is_trunc_equiv_closed_rev, exact H, fapply sigma.is_trunc_sigma, intros, apply is_trunc_succ, apply pi.is_trunc_pi, intros, esimp, /-exact _,-/ -- type class inference fails here apply is_trunc_eq, end end (λx y z, cone_comp) cone_id abstract begin intros, apply cone_hom_eq, esimp, apply assoc end end abstract begin intros, apply cone_hom_eq, esimp, apply id_left end end abstract begin intros, apply cone_hom_eq, esimp, apply id_right end end definition cone [constructor] : Precategory := precategory.Mk (precategory_cone F) end category