/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: hit.suspension Authors: Floris van Doorn Declaration of suspension -/ import .pushout open pushout unit eq equiv equiv.ops definition suspension (A : Type) : Type := pushout (λ(a : A), star.{0}) (λ(a : A), star.{0}) namespace suspension variable {A : Type} definition north (A : Type) : suspension A := inl _ _ star definition south (A : Type) : suspension A := inr _ _ star definition merid (a : A) : north A = south A := glue _ _ a protected definition rec {P : suspension A → Type} (PN : P !north) (PS : P !south) (Pm : Π(a : A), merid a ▸ PN = PS) (x : suspension A) : P x := begin fapply (pushout.rec_on _ _ x), { intro u, cases u, exact PN}, { intro u, cases u, exact PS}, { exact Pm}, end protected definition rec_on [reducible] {P : suspension A → Type} (y : suspension A) (PN : P !north) (PS : P !south) (Pm : Π(a : A), merid a ▸ PN = PS) : P y := suspension.rec PN PS Pm y theorem rec_merid {P : suspension A → Type} (PN : P !north) (PS : P !south) (Pm : Π(a : A), merid a ▸ PN = PS) (a : A) : apd (suspension.rec PN PS Pm) (merid a) = Pm a := !rec_glue protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS) (x : suspension A) : P := suspension.rec PN PS (λa, !tr_constant ⬝ Pm a) x protected definition elim_on [reducible] {P : Type} (x : suspension A) (PN : P) (PS : P) (Pm : A → PN = PS) : P := suspension.elim PN PS Pm x theorem elim_merid {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS) (a : A) : ap (suspension.elim PN PS Pm) (merid a) = Pm a := begin apply (@cancel_left _ _ _ _ (tr_constant (merid a) (suspension.elim PN PS Pm !north))), rewrite [-apd_eq_tr_constant_con_ap,↑suspension.elim,rec_merid], end protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (x : suspension A) : Type := suspension.elim PN PS (λa, ua (Pm a)) x protected definition elim_type_on [reducible] (x : suspension A) (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type := suspension.elim_type PN PS Pm x theorem elim_type_merid (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (x : suspension A) (a : A) : transport (suspension.elim_type PN PS Pm) (merid a) = Pm a := by rewrite [tr_eq_cast_ap_fn,↑suspension.elim_type,elim_merid];apply cast_ua_fn end suspension attribute suspension.north suspension.south [constructor] attribute suspension.rec suspension.elim [unfold-c 6] attribute suspension.elim_type [unfold-c 5] attribute suspension.rec_on suspension.elim_on [unfold-c 3] attribute suspension.elim_type_on [unfold-c 2]