/- Copyright (c) 2015 William Peterson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: William Peterson, Jeremy Avigad Extended gcd, Bezout's theorem, chinese remainder theorem. -/ import data.nat.div data.int .primes /- Bezout's theorem -/ section Bezout open nat int open eq.ops well_founded decidable prod open algebra private definition pair_nat.lt : ℕ × ℕ → ℕ × ℕ → Prop := measure pr₂ private definition pair_nat.lt.wf : well_founded pair_nat.lt := intro_k (measure.wf pr₂) 20 local attribute pair_nat.lt.wf [instance] local infixl `≺`:50 := pair_nat.lt private definition gcd.lt.dec (x y₁ : ℕ) : (succ y₁, x % succ y₁) ≺ (x, succ y₁) := !nat.mod_lt (succ_pos y₁) private definition egcd_rec_f (z : ℤ) : ℤ → ℤ → ℤ × ℤ := λ s t, (t, s - t * z) definition egcd.F : Π (p₁ : ℕ × ℕ), (Π p₂ : ℕ × ℕ, p₂ ≺ p₁ → ℤ × ℤ) → ℤ × ℤ | (x, y) := nat.cases_on y (λ f, (1, 0) ) (λ y₁ (f : Π p₂, p₂ ≺ (x, succ y₁) → ℤ × ℤ), let bz := f (succ y₁, x % succ y₁) !gcd.lt.dec in prod.cases_on bz (egcd_rec_f (x / succ y₁))) definition egcd (x y : ℕ) := fix egcd.F (pair x y) theorem egcd_zero (x : ℕ) : egcd x 0 = (1, 0) := well_founded.fix_eq egcd.F (x, 0) theorem egcd_succ (x y : ℕ) : egcd x (succ y) = prod.cases_on (egcd (succ y) (x % succ y)) (egcd_rec_f (x / succ y)) := well_founded.fix_eq egcd.F (x, succ y) theorem egcd_of_pos (x : ℕ) {y : ℕ} (ypos : y > 0) : let erec := egcd y (x % y), u := pr₁ erec, v := pr₂ erec in egcd x y = (v, u - v * (x / y)) := obtain (y' : nat) (yeq : y = succ y'), from exists_eq_succ_of_pos ypos, begin rewrite [yeq, egcd_succ, -prod.eta (egcd _ _)], esimp, unfold egcd_rec_f, rewrite [of_nat_div] end theorem egcd_prop (x y : ℕ) : (pr₁ (egcd x y)) * x + (pr₂ (egcd x y)) * y = gcd x y := gcd.induction x y (take m, by krewrite [egcd_zero, algebra.mul_zero, algebra.one_mul]) (take m n, assume npos : 0 < n, assume IH, begin let H := egcd_of_pos m npos, esimp at H, rewrite H, esimp, rewrite [gcd_rec, -IH], rewrite [algebra.add.comm], rewrite [-of_nat_mod], rewrite [int.mod_def], rewrite [+algebra.mul_sub_right_distrib], rewrite [+algebra.mul_sub_left_distrib, *left_distrib], rewrite [*sub_eq_add_neg, {pr₂ (egcd n (m % n)) * of_nat m + - _}algebra.add.comm], rewrite [-algebra.add.assoc ,algebra.mul.assoc] end) theorem Bezout_aux (x y : ℕ) : ∃ a b : ℤ, a * x + b * y = gcd x y := exists.intro _ (exists.intro _ (egcd_prop x y)) theorem Bezout (x y : ℤ) : ∃ a b : ℤ, a * x + b * y = gcd x y := obtain a' b' (H : a' * nat_abs x + b' * nat_abs y = gcd x y), from !Bezout_aux, begin existsi (a' * sign x), existsi (b' * sign y), rewrite [*mul.assoc, -*abs_eq_sign_mul, -*of_nat_nat_abs], apply H end end Bezout /- A sample application of Bezout's theorem, namely, an alternative proof that irreducible implies prime (dvd_or_dvd_of_prime_of_dvd_mul). -/ namespace nat open int algebra example {p x y : ℕ} (pp : prime p) (H : p ∣ x * y) : p ∣ x ∨ p ∣ y := decidable.by_cases (suppose p ∣ x, or.inl this) (suppose ¬ p ∣ x, have cpx : coprime p x, from coprime_of_prime_of_not_dvd pp this, obtain (a b : ℤ) (Hab : a * p + b * x = gcd p x), from Bezout_aux p x, assert a * p * y + b * x * y = y, by rewrite [-right_distrib, Hab, ↑coprime at cpx, cpx, int.one_mul], have p ∣ y, begin apply dvd_of_of_nat_dvd_of_nat, rewrite [-this], apply @dvd_add, {apply dvd_mul_of_dvd_left, apply dvd_mul_of_dvd_right, apply dvd.refl}, {rewrite mul.assoc, apply dvd_mul_of_dvd_right, apply of_nat_dvd_of_nat_of_dvd H} end, or.inr this) end nat