/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Floris van Doorn Ported from Coq HoTT -/ prelude import .equiv open eq equiv is_equiv --Ensure that the types compared are in the same universe section universe variable l variables {A B : Type.{l}} definition is_equiv_cast_of_eq [constructor] (H : A = B) : is_equiv (cast H) := is_equiv_tr (λX, X) H definition equiv_of_eq [constructor] (H : A = B) : A ≃ B := equiv.mk _ (is_equiv_cast_of_eq H) definition equiv_of_eq_refl [reducible] [unfold_full] (A : Type) : equiv_of_eq (refl A) = equiv.refl := idp end axiom univalence (A B : Type) : is_equiv (@equiv_of_eq A B) attribute univalence [instance] -- This is the version of univalence axiom we will probably use most often definition ua [reducible] {A B : Type} : A ≃ B → A = B := equiv_of_eq⁻¹ definition eq_equiv_equiv (A B : Type) : (A = B) ≃ (A ≃ B) := equiv.mk equiv_of_eq _ definition equiv_of_eq_ua [reducible] {A B : Type} (f : A ≃ B) : equiv_of_eq (ua f) = f := right_inv equiv_of_eq f definition cast_ua_fn {A B : Type} (f : A ≃ B) : cast (ua f) = f := ap to_fun (equiv_of_eq_ua f) definition cast_ua {A B : Type} (f : A ≃ B) (a : A) : cast (ua f) a = f a := ap10 (cast_ua_fn f) a definition cast_ua_inv_fn {A B : Type} (f : A ≃ B) : cast (ua f)⁻¹ = to_inv f := ap to_inv (equiv_of_eq_ua f) definition cast_ua_inv {A B : Type} (f : A ≃ B) (b : B) : cast (ua f)⁻¹ b = to_inv f b := ap10 (cast_ua_inv_fn f) b definition ua_equiv_of_eq [reducible] {A B : Type} (p : A = B) : ua (equiv_of_eq p) = p := left_inv equiv_of_eq p definition eq_of_equiv_lift {A B : Type} (f : A ≃ B) : A = lift B := ua (f ⬝e !equiv_lift) namespace equiv -- One consequence of UA is that we can transport along equivalencies of types -- We can use this for calculation evironments protected definition transport_of_equiv [subst] (P : Type → Type) {A B : Type} (H : A ≃ B) : P A → P B := eq.transport P (ua H) -- we can "recurse" on equivalences, by replacing them by (equiv_of_eq _) definition rec_on_ua [recursor] {A B : Type} {P : A ≃ B → Type} (f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q)) : P f := right_inv equiv_of_eq f ▸ H (ua f) -- a variant where we immediately recurse on the equality in the new goal definition rec_on_ua_idp [recursor] {A : Type} {P : Π{B}, A ≃ B → Type} {B : Type} (f : A ≃ B) (H : P equiv.refl) : P f := rec_on_ua f (λq, eq.rec_on q H) -- a variant where (equiv_of_eq (ua f)) will be replaced by f in the new goal definition rec_on_ua' {A B : Type} {P : A ≃ B → A = B → Type} (f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q) q) : P f (ua f) := right_inv equiv_of_eq f ▸ H (ua f) -- a variant where we do both definition rec_on_ua_idp' {A : Type} {P : Π{B}, A ≃ B → A = B → Type} {B : Type} (f : A ≃ B) (H : P equiv.refl idp) : P f (ua f) := rec_on_ua' f (λq, eq.rec_on q H) definition ua_refl (A : Type) : ua erfl = idpath A := eq_of_fn_eq_fn !eq_equiv_equiv (right_inv !eq_equiv_equiv erfl) definition ua_symm {A B : Type} (f : A ≃ B) : ua f⁻¹ᵉ = (ua f)⁻¹ := begin apply rec_on_ua_idp f, refine !ua_refl ⬝ inverse2 !ua_refl⁻¹ end definition ua_trans {A B C : Type} (f : A ≃ B) (g : B ≃ C) : ua (f ⬝e g) = ua f ⬝ ua g := begin apply rec_on_ua_idp g, apply rec_on_ua_idp f, refine !ua_refl ⬝ concat2 !ua_refl⁻¹ !ua_refl⁻¹ end end equiv