open nat eq infixr + := sum theorem add_assoc₁ : Π (a b c : ℕ), (a + b) + c = a + (b + c) | a b 0 := eq.refl (nat.rec a (λ x, succ) b) | a b (succ n) := calc (a + b) + (succ n) = succ ((a + b) + n) : rfl ... = succ (a + (b + n)) : ap succ (add_assoc₁ a b n) ... = a + (succ (b + n)) : rfl ... = a + (b + (succ n)) : rfl theorem add_assoc₂ : Π (a b c : ℕ), (a + b) + c = a + (b + c) | a b 0 := eq.refl (nat.rec a (λ x, succ) b) | a b (succ n) := ap succ (add_assoc₂ a b n) theorem add_assoc₃ : Π (a b c : ℕ), (a + b) + c = a + (b + c) | a b nat.zero := eq.refl (nat.add a b) | a b (succ n) := ap succ (add_assoc₃ a b n)