import algebra.group open algebra definition is_homomorphism [class] {G₁ G₂ : Type} [group G₁] [group G₂] (φ : G₁ → G₂) : Prop := Π(g h : G₁), φ (g * h) = φ g * φ h -- set_option pp.all true definition apply_iso {G₁ G₂ : Type} [group G₁] [group G₂] {φ : G₁ → G₂} [H : is_homomorphism φ] (g h : G₁) : φ (g * h) = φ g * φ h := H g h variables {G₁ G₂ : Type} (φ : G₁ → G₂) [group G₁] [group G₂] [is_homomorphism φ] theorem respect_one : φ 1 = 1 := assert φ (1 * 1) = φ 1 * φ 1, from apply_iso 1 1, assert φ 1 * 1 = φ 1 * φ 1, by rewrite one_mul at this; rewrite mul_one; exact this, assert 1 = φ 1, from mul_left_cancel this, eq.symm this