notation `⟪`:max t:(foldr `,` (e r, and.intro e r)) `⟫`:0 := t check ⟪ trivial, trivial, trivial ⟫ theorem tst (a b c d : Prop) : a ∧ b ∧ c ∧ d ↔ d ∧ c ∧ b ∧ a := begin apply iff.intro, begin intro H, match H with | ⟪ H₁, H₂, H₃, H₄ ⟫ := ⟪ H₄, H₃, H₂, H₁ ⟫ end end, begin intro H, match H with | ⟪ H₁, H₂, H₃, H₄ ⟫ := begin repeat (apply and.intro | assumption) end end end end wait tst print definition tst theorem tst2 (a b c d : Prop) : a ∧ b ∧ c ∧ d ↔ d ∧ c ∧ b ∧ a := begin apply iff.intro, repeat (intro H; repeat (cases H with [H', H] | apply and.intro | assumption)) end wait tst2 print definition tst2