/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis The real numbers, constructed as equivalence classes of Cauchy sequences of rationals. This construction follows Bishop and Bridges (1985). At this point, we no longer proceed constructively: this file makes heavy use of decidability, excluded middle, and Hilbert choice. Here, we show that ℝ is complete. -/ import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat import logic.choice open -[coercions] rat local notation 0 := rat.of_num 0 local notation 1 := rat.of_num 1 open -[coercions] nat open eq.ops open pnat local notation 2 := subtype.tag (nat.of_num 2) dec_trivial local notation 3 := subtype.tag (nat.of_num 3) dec_trivial namespace s theorem rat_approx_l1 {s : seq} (H : regular s) : ∀ n : ℕ+, ∃ q : ℚ, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → abs (s m - q) ≤ n⁻¹ := begin intro n, existsi (s (2 * n)), existsi 2 * n, intro m Hm, apply rat.le.trans, apply H, rewrite -(add_halves n), apply rat.add_le_add_right, apply inv_ge_of_le Hm end theorem rat_approx {s : seq} (H : regular s) : ∀ n : ℕ+, ∃ q : ℚ, s_le (s_abs (sadd s (sneg (const q)))) (const n⁻¹) := begin intro m, rewrite ↑s_le, apply exists.elim (rat_approx_l1 H m), intro q Hq, apply exists.elim Hq, intro N HN, existsi q, apply nonneg_of_bdd_within, repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg | assumption), intro n, existsi N, intro p Hp, rewrite ↑[sadd, sneg, s_abs, const], apply rat.le.trans, rotate 1, apply rat.sub_le_sub_left, apply HN, apply pnat.le.trans, apply Hp, rewrite -*pnat.mul.assoc, apply pnat.mul_le_mul_left, rewrite [sub_self, -neg_zero], apply neg_le_neg, apply rat.le_of_lt, apply inv_pos end definition r_abs (s : reg_seq) : reg_seq := reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s)) theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) : s_abs s ≡ s_abs t := begin rewrite [↑equiv at *], intro n, rewrite ↑s_abs, apply rat.le.trans, apply abs_abs_sub_abs_le_abs_sub, apply Heq end theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) := abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H theorem r_rat_approx (s : reg_seq) : ∀ n : ℕ+, ∃ q : ℚ, r_le (r_abs (radd s (rneg (r_const q)))) (r_const n⁻¹) := rat_approx (reg_seq.is_reg s) theorem const_bound {s : seq} (Hs : regular s) (n : ℕ+) : s_le (s_abs (sadd s (sneg (const (s n))))) (const n⁻¹) := begin rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const], intro m, apply iff.mp !rat.le_add_iff_neg_le_sub_left, apply rat.le.trans, apply Hs, apply rat.add_le_add_right, rewrite -*pnat.mul.assoc, apply inv_ge_of_le, apply pnat.mul_le_mul_left end theorem abs_const (a : ℚ) : const (abs a) ≡ s_abs (const a) := begin rewrite [↑s_abs, ↑const], apply equiv.refl end theorem r_abs_const (a : ℚ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_abs s ≡ s := begin apply eq_of_bdd, apply abs_reg_of_reg Hs, apply Hs, intro j, rewrite ↑s_abs, let Hz' := s_nonneg_of_ge_zero Hs Hz, existsi 2 * j, intro n Hn, apply or.elim (decidable.em (s n ≥ 0)), intro Hpos, rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero], apply rat.le_of_lt, apply inv_pos, intro Hneg, let Hneg' := lt_of_not_ge Hneg, have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'), rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn], apply rat.le.trans, apply rat.add_le_add, repeat (apply rat.neg_le_neg; apply Hz'), rewrite *rat.neg_neg, apply rat.le.trans, apply rat.add_le_add, repeat (apply inv_ge_of_le; apply Hn), rewrite pnat.add_halves, apply rat.le.refl end theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) : s_abs s ≡ sneg s := begin apply eq_of_bdd, apply abs_reg_of_reg Hs, apply reg_neg_reg Hs, intro j, rewrite [↑s_abs, ↑s_le at Hz], have Hz' : nonneg (sneg s), begin apply nonneg_of_nonneg_equiv, rotate 3, apply Hz, rotate 2, apply s_zero_add, repeat (apply Hs | apply zero_is_reg | apply reg_neg_reg | apply reg_add_reg) end, existsi 2 * j, intro n Hn, apply or.elim (decidable.em (s n ≥ 0)), intro Hpos, have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos, rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn], rewrite [↑nonneg at Hz', ↑sneg at Hz'], apply rat.le.trans, apply rat.add_le_add, repeat apply (rat.le_of_neg_le_neg !Hz'), apply rat.le.trans, apply rat.add_le_add, repeat (apply inv_ge_of_le; apply Hn), rewrite pnat.add_halves, apply rat.le.refl, intro Hneg, let Hneg' := lt_of_not_ge Hneg, rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self, abs_zero], apply rat.le_of_lt, apply inv_pos end theorem r_equiv_abs_of_ge_zero {s : reg_seq} (Hz : r_le r_zero s) : requiv (r_abs s) s := equiv_abs_of_ge_zero (reg_seq.is_reg s) Hz theorem r_equiv_neg_abs_of_le_zero {s : reg_seq} (Hz : r_le s r_zero) : requiv (r_abs s) (-s) := equiv_neg_abs_of_le_zero (reg_seq.is_reg s) Hz end s namespace real open [classes] s theorem p_add_fractions (n : ℕ+) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ := assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial, by rewrite[*inv_mul_eq_mul_inv,-*rat.right_distrib,T,rat.one_mul] theorem rewrite_helper9 (a b c : ℝ) : b - c = (b - a) - (c - a) := by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel] theorem rewrite_helper10 (a b c d : ℝ) : c - d = (c - a) + (a - b) + (b - d) := by rewrite[*add_sub,*sub_add_cancel] noncomputable definition rep (x : ℝ) : s.reg_seq := some (quot.exists_rep x) definition re_abs (x : ℝ) : ℝ := quot.lift_on x (λ a, quot.mk (s.r_abs a)) (take a b Hab, quot.sound (s.r_abs_well_defined Hab)) theorem r_abs_nonneg {x : ℝ} : zero ≤ x → re_abs x = x := quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_abs_of_ge_zero Ha)) theorem r_abs_nonpos {x : ℝ} : x ≤ zero → re_abs x = -x := quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha)) theorem abs_const' (a : ℚ) : of_rat (rat.abs a) = re_abs (of_rat a) := quot.sound (s.r_abs_const a) theorem re_abs_is_abs : re_abs = real.abs := funext (begin intro x, apply eq.symm, let Hor := decidable.em (zero ≤ x), apply or.elim Hor, intro Hor1, rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1], intro Hor2, have Hor2' : x ≤ zero, from le_of_lt (lt_of_not_ge Hor2), rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2'] end) theorem abs_const (a : ℚ) : of_rat (rat.abs a) = abs (of_rat a) := by rewrite -re_abs_is_abs -- ???? theorem rat_approx' (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, re_abs (x - of_rat q) ≤ of_rat n⁻¹ := quot.induction_on x (λ s n, s.r_rat_approx s n) theorem rat_approx (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, abs (x - of_rat q) ≤ of_rat n⁻¹ := by rewrite -re_abs_is_abs; apply rat_approx' noncomputable definition approx (x : ℝ) (n : ℕ+) := some (rat_approx x n) theorem approx_spec (x : ℝ) (n : ℕ+) : abs (x - (of_rat (approx x n))) ≤ of_rat n⁻¹ := some_spec (rat_approx x n) theorem approx_spec' (x : ℝ) (n : ℕ+) : abs ((of_rat (approx x n)) - x) ≤ of_rat n⁻¹ := by rewrite abs_sub; apply approx_spec notation `r_seq` := ℕ+ → ℝ noncomputable definition converges_to (X : r_seq) (a : ℝ) (N : ℕ+ → ℕ+) := ∀ k : ℕ+, ∀ n : ℕ+, n ≥ N k → abs (X n - a) ≤ of_rat k⁻¹ noncomputable definition cauchy (X : r_seq) (M : ℕ+ → ℕ+) := ∀ k : ℕ+, ∀ m n : ℕ+, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ of_rat k⁻¹ theorem cauchy_of_converges_to {X : r_seq} {a : ℝ} {N : ℕ+ → ℕ+} (Hc : converges_to X a N) : cauchy X (λ k, N (2 * k)) := begin intro k m n Hm Hn, rewrite (rewrite_helper9 a), apply le.trans, apply abs_add_le_abs_add_abs, apply le.trans, apply add_le_add, apply Hc, apply Hm, krewrite abs_neg, apply Hc, apply Hn, xrewrite of_rat_add, apply of_rat_le_of_rat_of_le, rewrite pnat.add_halves, apply rat.le.refl end definition Nb (M : ℕ+ → ℕ+) := λ k, pnat.max (3 * k) (M (2 * k)) theorem Nb_spec_right (M : ℕ+ → ℕ+) (k : ℕ+) : M (2 * k) ≤ Nb M k := !max_right theorem Nb_spec_left (M : ℕ+ → ℕ+) (k : ℕ+) : 3 * k ≤ Nb M k := !max_left noncomputable definition lim_seq {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : ℕ+ → ℚ := λ k, approx (X (Nb M k)) (2 * k) theorem lim_seq_reg_helper {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) {m n : ℕ+} (Hmn : M (2 * n) ≤M (2 * m)) : abs (of_rat (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs (X (Nb M n) - of_rat (lim_seq Hc n)) ≤ of_rat (m⁻¹ + n⁻¹) := begin apply le.trans, apply add_le_add_three, apply approx_spec', rotate 1, apply approx_spec, rotate 1, apply Hc, rotate 1, apply Nb_spec_right, rotate 1, apply pnat.le.trans, apply Hmn, apply Nb_spec_right, rewrite [*of_rat_add, rat.add.assoc, pnat.add_halves], apply of_rat_le_of_rat_of_le, apply rat.add_le_add_right, apply inv_ge_of_le, apply pnat.mul_le_mul_left end theorem lim_seq_reg {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : s.regular (lim_seq Hc) := begin rewrite ↑s.regular, intro m n, apply le_of_rat_le_of_rat, rewrite [abs_const, -of_rat_sub, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))], apply real.le.trans, apply abs_add_three, let Hor := decidable.em (M (2 * m) ≥ M (2 * n)), apply or.elim Hor, intro Hor1, apply lim_seq_reg_helper Hc Hor1, intro Hor2, let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2), rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub, -- ??? rat.add.comm, add_comm_three], apply lim_seq_reg_helper Hc Hor2' end theorem lim_seq_spec {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) (k : ℕ+) : s.s_le (s.s_abs (s.sadd (lim_seq Hc) (s.sneg (s.const (lim_seq Hc k))) )) (s.const k⁻¹) := begin apply s.const_bound, apply lim_seq_reg end noncomputable definition r_lim_seq {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : s.reg_seq := s.reg_seq.mk (lim_seq Hc) (lim_seq_reg Hc) theorem r_lim_seq_spec {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) (k : ℕ+) : s.r_le (s.r_abs (( s.radd (r_lim_seq Hc) (s.rneg (s.r_const ((s.reg_seq.sq (r_lim_seq Hc)) k)))))) (s.r_const (k)⁻¹) := lim_seq_spec Hc k noncomputable definition lim {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : ℝ := quot.mk (r_lim_seq Hc) theorem re_lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) : re_abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ := r_lim_seq_spec Hc k theorem lim_spec' {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) : abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ := by rewrite -re_abs_is_abs; apply re_lim_spec theorem lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) : abs ((of_rat ((lim_seq Hc) k)) - (lim Hc)) ≤ of_rat (k)⁻¹ := by rewrite abs_sub; apply lim_spec' theorem converges_of_cauchy {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : converges_to X (lim Hc) (Nb M) := begin intro k n Hn, rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq Hc n))), apply le.trans, apply abs_add_three, apply le.trans, apply add_le_add_three, apply Hc, apply pnat.le.trans, rotate 1, apply Hn, rotate_right 1, apply Nb_spec_right, have HMk : M (2 * k) ≤ Nb M n, begin apply pnat.le.trans, apply Nb_spec_right, apply pnat.le.trans, apply Hn, apply pnat.le.trans, apply mul_le_mul_left 3, apply Nb_spec_left end, apply HMk, rewrite ↑lim_seq, apply approx_spec, apply lim_spec, rewrite 2 of_rat_add, apply of_rat_le_of_rat_of_le, apply rat.le.trans, apply rat.add_le_add_three, apply rat.le.refl, apply inv_ge_of_le, apply pnat_mul_le_mul_left', apply pnat.le.trans, rotate 1, apply Hn, rotate_right 1, apply Nb_spec_left, apply inv_ge_of_le, apply pnat.le.trans, rotate 1, apply Hn, rotate_right 1, apply Nb_spec_left, rewrite [-*pnat.mul.assoc, p_add_fractions], apply rat.le.refl end -------------------------------------------------- -- supremum property -- this development roughly follows the proof of completeness done in Isabelle. section supremum open prod nat local postfix `~` := nat_of_pnat -- The top part of this section could be refactored. What is the appropriate place to define -- bounds, supremum, etc? In algebra/ordered_field? They potentially apply to more than just ℝ. local notation 2 := (1 : ℚ) + 1 parameter X : ℝ → Prop definition rpt {A : Type} (op : A → A) : ℕ → A → A | rpt 0 := λ a, a | rpt (succ k) := λ a, op (rpt k a) definition ub (x : ℝ) := ∀ y : ℝ, X y → y ≤ x definition bounded := ∃ x : ℝ, ub x definition sup (x : ℝ) := ub x ∧ ∀ y : ℝ, ub y → x ≤ y parameter elt : ℝ hypothesis inh : X elt parameter bound : ℝ hypothesis bdd : ub bound -- floor and ceil should be defined directly. I'm not sure of the best way to do this yet. parameter floor : ℝ → int parameter ceil : ℝ → int hypothesis floor_spec : ∀ x : ℝ, of_rat (of_int (floor x)) ≤ x hypothesis ceil_spec : ∀ x : ℝ, of_rat (of_int (ceil x)) ≥ x hypothesis floor_succ : ∀ x : ℝ, int.lt (floor (x - 1)) (floor x) hypothesis ceil_succ : ∀ x : ℝ, int.lt (ceil x) (ceil (x + 1)) include inh bdd floor_spec ceil_spec floor_succ ceil_succ -- this should exist somewhere, no? I can't find it theorem not_forall_of_exists_not {A : Type} {P : A → Prop} (H : ∃ a : A, ¬ P a) : ¬ ∀ a : A, P a := begin intro Hall, cases H with [a, Ha], apply Ha (Hall a) end definition avg (a b : ℚ) := a / 2 + b / 2 definition bisect (ab : ℚ × ℚ) := if ub (avg (pr1 ab) (pr2 ab)) then (pr1 ab, (avg (pr1 ab) (pr2 ab))) else (avg (pr1 ab) (pr2 ab), pr2 ab) set_option pp.coercions true definition under : ℚ := of_int (floor (elt - 1)) theorem under_spec1 : of_rat under < elt := have H : of_rat under < of_rat (of_int (floor elt)), begin apply of_rat_lt_of_rat_of_lt, apply iff.mpr !of_int_lt_of_int, apply floor_succ end, lt_of_lt_of_le H !floor_spec theorem under_spec : ¬ ub under := begin rewrite ↑ub, apply not_forall_of_exists_not, existsi elt, apply iff.mpr not_implies_iff_and_not, apply and.intro, apply inh, apply not_le_of_gt under_spec1 end definition over : ℚ := of_int (ceil (bound + 1)) -- b theorem over_spec1 : bound < of_rat over := have H : of_rat (of_int (ceil bound)) < of_rat over, begin apply of_rat_lt_of_rat_of_lt, apply iff.mpr !of_int_lt_of_int, apply ceil_succ end, lt_of_le_of_lt !ceil_spec H theorem over_spec : ub over := begin rewrite ↑ub, intro y Hy, apply le_of_lt, apply lt_of_le_of_lt, apply bdd, apply Hy, apply over_spec1 end definition under_seq := λ n : ℕ, pr1 (rpt bisect n (under, over)) -- A definition over_seq := λ n : ℕ, pr2 (rpt bisect n (under, over)) -- B definition avg_seq := λ n : ℕ, avg (over_seq n) (under_seq n) -- C theorem avg_symm (n : ℕ) : avg_seq n = avg (under_seq n) (over_seq n) := by rewrite [↑avg_seq, ↑avg, rat.add.comm] theorem over_0 : over_seq 0 = over := rfl theorem under_0 : under_seq 0 = under := rfl theorem succ_helper (n : ℕ) : avg (pr1 (rpt bisect n (under, over))) (pr2 (rpt bisect n (under, over))) = avg_seq n := by rewrite avg_symm theorem under_succ (n : ℕ) : under_seq (succ n) = (if ub (avg_seq n) then under_seq n else avg_seq n) := begin cases (decidable.em (ub (avg_seq n))) with [Hub, Hub], rewrite [if_pos Hub], have H : pr1 (bisect (rpt bisect n (under, over))) = under_seq n, by rewrite [↑under_seq, ↑bisect at {2}, -succ_helper at Hub, if_pos Hub], apply H, rewrite [if_neg Hub], have H : pr1 (bisect (rpt bisect n (under, over))) = avg_seq n, by rewrite [↑bisect at {2}, -succ_helper at Hub, if_neg Hub, avg_symm], apply H end theorem over_succ (n : ℕ) : over_seq (succ n) = (if ub (avg_seq n) then avg_seq n else over_seq n) := begin cases (decidable.em (ub (avg_seq n))) with [Hub, Hub], rewrite [if_pos Hub], have H : pr2 (bisect (rpt bisect n (under, over))) = avg_seq n, by rewrite [↑bisect at {2}, -succ_helper at Hub, if_pos Hub, avg_symm], apply H, rewrite [if_neg Hub], have H : pr2 (bisect (rpt bisect n (under, over))) = over_seq n, by rewrite [↑over_seq, ↑bisect at {2}, -succ_helper at Hub, if_neg Hub], apply H end -- ??? theorem rat.pow_add (a : ℚ) (m : ℕ) : ∀ n, rat.pow a (m + n) = rat.pow a m * rat.pow a n := rat.pow_add a m theorem width (n : ℕ) : over_seq n - under_seq n = (over - under) / (rat.pow 2 n) := nat.induction_on n (by xrewrite [over_0, under_0, rat.pow_zero, rat.div_one]) (begin intro a Ha, rewrite [over_succ, under_succ], let Hou := calc (over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / rat.pow 2 a) / 2 : by rewrite [rat.div_sub_div_same, Ha] ... = (over - under) / (rat.pow 2 a * 2) : rat.div_div_eq_div_mul (rat.ne_of_gt (rat.pow_pos dec_trivial _)) dec_trivial ... = (over - under) / rat.pow 2 (a + 1) : by rewrite rat.pow_add, cases (decidable.em (ub (avg_seq a))), rewrite [*if_pos a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.add.assoc, rat.div_two_sub_self], rewrite [*if_neg a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.sub_add_eq_sub_sub, rat.sub_self_div_two] end) theorem binary_nat_bound (a : ℕ) : of_nat a ≤ (rat.pow 2 a) := nat.induction_on a (rat.zero_le_one) (take n, assume Hn, calc of_nat (succ n) = (of_nat n) + 1 : of_nat_add ... ≤ rat.pow 2 n + 1 : rat.add_le_add_right Hn ... ≤ rat.pow 2 n + rat.pow 2 n : rat.add_le_add_left (rat.pow_ge_one_of_ge_one rat.two_ge_one _) ... = rat.pow 2 (succ n) : rat.pow_two_add) theorem binary_bound (a : ℚ) : ∃ n : ℕ, a ≤ rat.pow 2 n := exists.intro (ubound a) (calc a ≤ of_nat (ubound a) : ubound_ge ... ≤ rat.pow 2 (ubound a) : binary_nat_bound) theorem rat_power_two_le (k : ℕ+) : rat_of_pnat k ≤ rat.pow 2 k~ := !binary_nat_bound theorem width_narrows : ∃ n : ℕ, over_seq n - under_seq n ≤ 1 := begin cases binary_bound (over - under) with [a, Ha], existsi a, rewrite (width a), apply rat.div_le_of_le_mul, apply rat.pow_pos dec_trivial, rewrite rat.mul_one, apply Ha end definition over' := over_seq (some width_narrows) definition under' := under_seq (some width_narrows) definition over_seq' := λ n, over_seq (n + some width_narrows) definition under_seq' := λ n, under_seq (n + some width_narrows) theorem over_seq'0 : over_seq' 0 = over' := by rewrite [↑over_seq', nat.zero_add] theorem under_seq'0 : under_seq' 0 = under' := by rewrite [↑under_seq', nat.zero_add] theorem under_over' : over' - under' ≤ 1 := some_spec width_narrows theorem width' (n : ℕ) : over_seq' n - under_seq' n ≤ 1 / rat.pow 2 n := nat.induction_on n (begin xrewrite [over_seq'0, under_seq'0, rat.pow_zero, rat.div_one], apply under_over' end) (begin intros a Ha, rewrite [↑over_seq' at *, ↑under_seq' at *, *succ_add at *, width at *, -add_one, -(add_one a), rat.pow_add, rat.pow_add _ a 1, *rat.pow_one], apply rat.div_mul_le_div_mul_of_div_le_div_pos' Ha dec_trivial end) theorem PA (n : ℕ) : ¬ ub (under_seq n) := nat.induction_on n (by rewrite under_0; apply under_spec) (begin intro a Ha, rewrite under_succ, cases (decidable.em (ub (avg_seq a))), rewrite (if_pos a_1), assumption, rewrite (if_neg a_1), assumption end) theorem PB (n : ℕ) : ub (over_seq n) := nat.induction_on n (by rewrite over_0; apply over_spec) (begin intro a Ha, rewrite over_succ, cases (decidable.em (ub (avg_seq a))), rewrite (if_pos a_1), assumption, rewrite (if_neg a_1), assumption end) theorem under_lt_over : under < over := begin cases (exists_not_of_not_forall under_spec) with [x, Hx], cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu], apply lt_of_rat_lt_of_rat, apply lt_of_lt_of_le, apply lt_of_not_ge Hxu, apply over_spec _ HXx end theorem under_seq_lt_over_seq : ∀ m n : ℕ, under_seq m < over_seq n := begin intros, cases (exists_not_of_not_forall (PA m)) with [x, Hx], cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu], apply lt_of_rat_lt_of_rat, apply lt_of_lt_of_le, apply lt_of_not_ge Hxu, apply PB, apply HXx end theorem under_seq_lt_over_seq_single : ∀ n : ℕ, under_seq n < over_seq n := by intros; apply under_seq_lt_over_seq theorem under_seq'_lt_over_seq' : ∀ m n : ℕ, under_seq' m < over_seq' n := by intros; apply under_seq_lt_over_seq theorem under_seq'_lt_over_seq'_single : ∀ n : ℕ, under_seq' n < over_seq' n := by intros; apply under_seq_lt_over_seq theorem under_seq_mono_helper (i k : ℕ) : under_seq i ≤ under_seq (i + k) := (nat.induction_on k (by rewrite nat.add_zero; apply rat.le.refl) (begin intros a Ha, rewrite [add_succ, under_succ], cases (decidable.em (ub (avg_seq (i + a)))) with [Havg, Havg], rewrite (if_pos Havg), apply Ha, rewrite [if_neg Havg, ↑avg_seq, ↑avg], apply rat.le.trans, apply Ha, rewrite -rat.add_halves at {1}, apply rat.add_le_add_right, apply rat.div_le_div_of_le_of_pos, apply rat.le_of_lt, apply under_seq_lt_over_seq, apply dec_trivial end)) theorem under_seq_mono (i j : ℕ) (H : i ≤ j) : under_seq i ≤ under_seq j := begin cases le.elim H with [k, Hk'], rewrite -Hk', apply under_seq_mono_helper end theorem over_seq_mono_helper (i k : ℕ) : over_seq (i + k) ≤ over_seq i := nat.induction_on k (by rewrite nat.add_zero; apply rat.le.refl) (begin intros a Ha, rewrite [add_succ, over_succ], cases (decidable.em (ub (avg_seq (i + a)))) with [Havg, Havg], rewrite [if_pos Havg, ↑avg_seq, ↑avg], apply rat.le.trans, rotate 1, apply Ha, rotate 1, rewrite -{over_seq (i + a)}rat.add_halves at {2}, apply rat.add_le_add_left, apply rat.div_le_div_of_le_of_pos, apply rat.le_of_lt, apply under_seq_lt_over_seq, apply dec_trivial, rewrite [if_neg Havg], apply Ha end) theorem over_seq_mono (i j : ℕ) (H : i ≤ j) : over_seq j ≤ over_seq i := begin cases le.elim H with [k, Hk'], rewrite -Hk', apply over_seq_mono_helper end theorem rat_power_two_inv_ge (k : ℕ+) : 1 / rat.pow 2 k~ ≤ k⁻¹ := rat.div_le_div_of_le !rat_of_pnat_is_pos !rat_power_two_le open s theorem regular_lemma_helper {s : seq} {m n : ℕ+} (Hm : m ≤ n) (H : ∀ n i : ℕ+, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) : rat.abs (s m - s n) ≤ m⁻¹ + n⁻¹ := begin cases (H m n Hm) with [T1under, T1over], cases (H m m (!pnat.le.refl)) with [T2under, T2over], apply rat.le.trans, apply rat.dist_bdd_within_interval, apply under_seq'_lt_over_seq'_single, rotate 1, repeat assumption, apply rat.le.trans, apply width', apply rat.le.trans, apply rat_power_two_inv_ge, apply rat.le_add_of_nonneg_right, apply rat.le_of_lt (!inv_pos) end theorem regular_lemma (s : seq) (H : ∀ n i : ℕ+, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) : regular s := begin rewrite ↑regular, intros, cases (decidable.em (m ≤ n)) with [Hm, Hn], apply regular_lemma_helper Hm H, let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H, rewrite [rat.abs_sub at T, {n⁻¹ + _}rat.add.comm at T], exact T end definition p_under_seq : seq := λ n : ℕ+, under_seq' n~ definition p_over_seq : seq := λ n : ℕ+, over_seq' n~ theorem under_seq_regular : regular p_under_seq := begin apply regular_lemma, intros n i Hni, apply and.intro, apply under_seq_mono, apply nat.add_le_add_right Hni, apply rat.le_of_lt, apply under_seq_lt_over_seq end theorem over_seq_regular : regular p_over_seq := begin apply regular_lemma, intros n i Hni, apply and.intro, apply rat.le_of_lt, apply under_seq_lt_over_seq, apply over_seq_mono, apply nat.add_le_add_right Hni end definition sup_over : ℝ := quot.mk (reg_seq.mk p_over_seq over_seq_regular) definition sup_under : ℝ := quot.mk (reg_seq.mk p_under_seq under_seq_regular) theorem over_bound : ub sup_over := begin rewrite ↑ub, intros y Hy, apply le_of_le_reprs, intro n, apply PB, apply Hy end theorem under_lowest_bound : ∀ y : ℝ, ub y → sup_under ≤ y := begin intros y Hy, apply le_of_reprs_le, intro n, cases (exists_not_of_not_forall (PA _)) with [x, Hx], cases (iff.mp not_implies_iff_and_not Hx) with [HXx, Hxn], apply le.trans, apply le_of_lt, apply lt_of_not_ge Hxn, apply Hy, apply HXx end theorem under_over_equiv : p_under_seq ≡ p_over_seq := begin rewrite ↑equiv, intros, apply rat.le.trans, have H : p_under_seq n < p_over_seq n, from !under_seq_lt_over_seq, rewrite [rat.abs_of_neg (iff.mpr !rat.sub_neg_iff_lt H), rat.neg_sub], apply width', apply rat.le.trans, apply rat_power_two_inv_ge, apply rat.le_add_of_nonneg_left, apply rat.le_of_lt !inv_pos end theorem under_over_eq : sup_under = sup_over := quot.sound under_over_equiv theorem supremum_of_complete : ∃ x : ℝ, sup x := exists.intro sup_over (and.intro over_bound (under_over_eq ▸ under_lowest_bound)) end supremum end real