-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn import logic.axioms.funext open eq eq.ops inductive category [class] (ob : Type) : Type := mk : Π (hom : ob → ob → Type) (comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c) (id : Π {a : ob}, hom a a), (Π ⦃a b c d : ob⦄ {h : hom c d} {g : hom b c} {f : hom a b}, comp h (comp g f) = comp (comp h g) f) → (Π ⦃a b : ob⦄ {f : hom a b}, comp id f = f) → (Π ⦃a b : ob⦄ {f : hom a b}, comp f id = f) → category ob namespace category variables {ob : Type} [C : category ob] variables {a b c d : ob} include C definition hom [reducible] : ob → ob → Type := rec (λ hom compose id assoc idr idl, hom) C -- note: needs to be reducible to typecheck composition in opposite category definition compose [reducible] : Π {a b c : ob}, hom b c → hom a b → hom a c := rec (λ hom compose id assoc idr idl, compose) C definition id [reducible] : Π {a : ob}, hom a a := rec (λ hom compose id assoc idr idl, id) C definition ID [reducible] (a : ob) : hom a a := id infixr `∘` := compose infixl `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→)) variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a} theorem assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), h ∘ (g ∘ f) = (h ∘ g) ∘ f := rec (λ hom comp id assoc idr idl, assoc) C theorem id_left : Π ⦃a b : ob⦄ (f : hom a b), id ∘ f = f := rec (λ hom comp id assoc idl idr, idl) C theorem id_right : Π ⦃a b : ob⦄ (f : hom a b), f ∘ id = f := rec (λ hom comp id assoc idl idr, idr) C --the following is the only theorem for which "include C" is necessary if C is a variable (why?) theorem id_compose (a : ob) : (ID a) ∘ id = id := !id_left theorem left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id := calc i = i ∘ id : id_right ... = id : H theorem right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id := calc i = id ∘ i : id_left ... = id : H end category inductive Category : Type := mk : Π (ob : Type), category ob → Category namespace category definition Mk {ob} (C) : Category := Category.mk ob C definition MK (a b c d e f g) : Category := Category.mk a (category.mk b c d e f g) definition objects [coercion] [reducible] (C : Category) : Type := Category.rec (fun c s, c) C definition category_instance [instance] [coercion] [reducible] (C : Category) : category (objects C) := Category.rec (fun c s, s) C end category open category theorem Category.equal (C : Category) : Category.mk C C = C := Category.rec (λ ob c, rfl) C