/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.ordered_group Authors: Jeremy Avigad Partially ordered additive groups. Modeled on Isabelle's library. The comments below indicate that we could refine the structures, though we would have to declare more inheritance paths. -/ import logic.eq data.unit data.sigma data.prod import algebra.function algebra.binary import algebra.group algebra.order open eq eq.ops -- note: ⁻¹ will be overloaded namespace algebra variable {A : Type} structure ordered_cancel_comm_monoid [class] (A : Type) extends add_comm_monoid A, add_left_cancel_semigroup A, add_right_cancel_semigroup A, order_pair A := (add_le_add_left : ∀a b c, le a b → le (add c a) (add c b)) (le_of_add_le_add_left : ∀a b c, le (add c a) (add c b) → le a b) section variables [s : ordered_cancel_comm_monoid A] (a b c d e : A) include s theorem add_le_add_left {a b : A} (H : a ≤ b) (c : A) : c + a ≤ c + b := !ordered_cancel_comm_monoid.add_le_add_left H theorem add_le_add_right {a b : A} (H : a ≤ b) (c : A) : a + c ≤ b + c := (add.comm c a) ▸ (add.comm c b) ▸ (add_le_add_left H c) theorem add_le_add {a b c d : A} (Hab : a ≤ b) (Hcd : c ≤ d) : a + c ≤ b + d := le.trans (add_le_add_right Hab c) (add_le_add_left Hcd b) theorem add_lt_add_left {a b : A} (H : a < b) (c : A) : c + a < c + b := have H1 : c + a ≤ c + b, from add_le_add_left (le_of_lt H) c, have H2 : c + a ≠ c + b, from take H3 : c + a = c + b, have H4 : a = b, from add.left_cancel H3, lt.ne H H4, lt_of_le_of_ne H1 H2 theorem add_lt_add_right {a b : A} (H : a < b) (c : A) : a + c < b + c := (add.comm c a) ▸ (add.comm c b) ▸ (add_lt_add_left H c) theorem add_lt_add_of_lt_of_lt {a b c d : A} (Hab : a < b) (Hcd : c < d) : a + c < b + d := lt.trans (add_lt_add_right Hab c) (add_lt_add_left Hcd b) theorem add_lt_add_of_le_of_lt {a b c d : A} (Hab : a ≤ b) (Hcd : c < d) : a + c < b + d := lt_of_le_of_lt (add_le_add_right Hab c) (add_lt_add_left Hcd b) theorem add_lt_add_of_lt_of_le {a b c d : A} (Hab : a < b) (Hcd : c ≤ d) : a + c < b + d := lt_of_lt_of_le (add_lt_add_right Hab c) (add_le_add_left Hcd b) -- here we start using le_of_add_le_add_left. theorem le_of_add_le_add_left {a b c : A} (H : a + b ≤ a + c) : b ≤ c := !ordered_cancel_comm_monoid.le_of_add_le_add_left H theorem le_of_add_le_add_right {a b c : A} (H : a + b ≤ c + b) : a ≤ c := le_of_add_le_add_left ((add.comm a b) ▸ (add.comm c b) ▸ H) theorem lt_of_add_lt_add_left {a b c : A} (H : a + b < a + c) : b < c := have H1 : b ≤ c, from le_of_add_le_add_left (le_of_lt H), have H2 : b ≠ c, from assume H3 : b = c, lt.irrefl _ (H3 ▸ H), lt_of_le_of_ne H1 H2 theorem lt_of_add_lt_add_right {a b c : A} (H : a + b < c + b) : a < c := lt_of_add_lt_add_left ((add.comm a b) ▸ (add.comm c b) ▸ H) theorem add_le_add_left_iff : a + b ≤ a + c ↔ b ≤ c := iff.intro le_of_add_le_add_left (assume H, add_le_add_left H _) theorem add_le_add_right_iff : a + b ≤ c + b ↔ a ≤ c := iff.intro le_of_add_le_add_right (assume H, add_le_add_right H _) theorem add_lt_add_left_iff : a + b < a + c ↔ b < c := iff.intro lt_of_add_lt_add_left (assume H, add_lt_add_left H _) theorem add_lt_add_right_iff : a + b < c + b ↔ a < c := iff.intro lt_of_add_lt_add_right (assume H, add_lt_add_right H _) -- here we start using properties of zero. theorem add_nonneg {a b : A} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a + b := !add.left_id ▸ (add_le_add Ha Hb) theorem add_pos_of_pos_of_nonneg {a b : A} (Ha : 0 < a) (Hb : 0 ≤ b) : 0 < a + b := !add.left_id ▸ (add_lt_add_of_lt_of_le Ha Hb) theorem add_pos_of_nonneg_of_pos {a b : A} (Ha : 0 ≤ a) (Hb : 0 < b) : 0 < a + b := !add.left_id ▸ (add_lt_add_of_le_of_lt Ha Hb) theorem add_pos_of_pos_of_pos {a b : A} (Ha : 0 < a) (Hb : 0 < b) : 0 < a + b := !add.left_id ▸ (add_lt_add_of_lt_of_lt Ha Hb) theorem add_nonpos {a b : A} (Ha : a ≤ 0) (Hb : b ≤ 0) : a + b ≤ 0 := !add.left_id ▸ (add_le_add Ha Hb) theorem add_neg_of_neg_of_nonpos {a b : A} (Ha : a < 0) (Hb : b ≤ 0) : a + b < 0 := !add.left_id ▸ (add_lt_add_of_lt_of_le Ha Hb) theorem add_neg_of_nonpos_of_neg {a b : A} (Ha : a ≤ 0) (Hb : b < 0) : a + b < 0 := !add.left_id ▸ (add_lt_add_of_le_of_lt Ha Hb) theorem add_neg_of_neg_of_neg {a b : A} (Ha : a < 0) (Hb : b < 0) : a + b < 0 := !add.left_id ▸ (add_lt_add_of_lt_of_lt Ha Hb) -- TODO: add nonpos version (will be easier with simplifier) theorem add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_noneng {a b : A} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : a + b = 0 ↔ a = 0 ∧ b = 0 := iff.intro (assume Hab : a + b = 0, have Ha' : a ≤ 0, from calc a = a + 0 : add.right_id ... ≤ a + b : add_le_add_left Hb ... = 0 : Hab, have Haz : a = 0, from le.antisym Ha' Ha, have Hb' : b ≤ 0, from calc b = 0 + b : add.left_id ... ≤ a + b : add_le_add_right Ha ... = 0 : Hab, have Hbz : b = 0, from le.antisym Hb' Hb, and.intro Haz Hbz) (assume Hab : a = 0 ∧ b = 0, (and.elim_left Hab)⁻¹ ▸ (and.elim_right Hab)⁻¹ ▸ (add.right_id 0)) theorem le_add_of_nonneg_of_le (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ a + c := !add.left_id ▸ add_le_add Ha Hbc theorem le_add_of_le_of_nonneg (Hbc : b ≤ c) (Ha : 0 ≤ a) : b ≤ c + a := !add.right_id ▸ add_le_add Hbc Ha theorem lt_add_of_pos_of_le (Ha : 0 < a) (Hbc : b ≤ c) : b < a + c := !add.left_id ▸ add_lt_add_of_lt_of_le Ha Hbc theorem lt_add_of_le_of_pos (Hbc : b ≤ c) (Ha : 0 < a) : b < c + a := !add.right_id ▸ add_lt_add_of_le_of_lt Hbc Ha theorem add_le_of_nonpos_of_le (Ha : a ≤ 0) (Hbc : b ≤ c) : a + b ≤ c := !add.left_id ▸ add_le_add Ha Hbc theorem add_le_of_le_of_nonpos (Hbc : b ≤ c) (Ha : a ≤ 0) : b + a ≤ c := !add.right_id ▸ add_le_add Hbc Ha theorem add_lt_of_neg_of_le (Ha : a < 0) (Hbc : b ≤ c) : a + b < c := !add.left_id ▸ add_lt_add_of_lt_of_le Ha Hbc theorem add_lt_of_le_of_neg (Hbc : b ≤ c) (Ha : a < 0) : b + a < c := !add.right_id ▸ add_lt_add_of_le_of_lt Hbc Ha theorem lt_add_of_nonneg_of_lt (Ha : 0 ≤ a) (Hbc : b < c) : b < a + c := !add.left_id ▸ add_lt_add_of_le_of_lt Ha Hbc theorem lt_add_of_lt_of_nonneg (Hbc : b < c) (Ha : 0 ≤ a) : b < c + a := !add.right_id ▸ add_lt_add_of_lt_of_le Hbc Ha theorem lt_add_of_pos_of_lt (Ha : 0 < a) (Hbc : b < c) : b < a + c := !add.left_id ▸ add_lt_add_of_lt_of_lt Ha Hbc theorem lt_add_of_lt_of_pos (Hbc : b < c) (Ha : 0 < a) : b < c + a := !add.right_id ▸ add_lt_add_of_lt_of_lt Hbc Ha theorem add_lt_of_nonpos_of_lt (Ha : a ≤ 0) (Hbc : b < c) : a + b < c := !add.left_id ▸ add_lt_add_of_le_of_lt Ha Hbc theorem add_lt_of_lt_of_nonpos (Hbc : b < c) (Ha : a ≤ 0) : b + a < c := !add.right_id ▸ add_lt_add_of_lt_of_le Hbc Ha theorem add_lt_of_neg_of_lt (Ha : a < 0) (Hbc : b < c) : a + b < c := !add.left_id ▸ add_lt_add_of_lt_of_lt Ha Hbc theorem add_lt_of_lt_of_neg (Hbc : b < c) (Ha : a < 0) : b + a < c := !add.right_id ▸ add_lt_add_of_lt_of_lt Hbc Ha end -- TODO: there is more we can do if we have max and min (in order.lean as well) -- TODO: there is more we can do if we assume a ≤ b ↔ ∃c. a + c = b. -- This covers the natural numbers, -- but it is not clear whether it provides any further useful generality. structure ordered_comm_group [class] (A : Type) extends add_comm_group A, order_pair A := (add_le_add_left : ∀a b c, le a b → le (add c a) (add c b)) definition ordered_comm_group.to_ordered_cancel_comm_monoid [instance] (A : Type) [s : ordered_comm_group A] : ordered_cancel_comm_monoid A := ordered_cancel_comm_monoid.mk ordered_comm_group.add ordered_comm_group.add_assoc (@ordered_comm_group.zero A s) add.left_id add.right_id ordered_comm_group.add_comm (@add.left_cancel _ _) (@add.right_cancel _ _) has_le.le le.refl (@le.trans _ _) (@le.antisym _ _) has_lt.lt (@lt_iff_le_and_ne _ _) ordered_comm_group.add_le_add_left proof take a b c : A, assume H : c + a ≤ c + b, have H' : -c + (c + a) ≤ -c + (c + b), from ordered_comm_group.add_le_add_left _ _ _ H, !neg_add_cancel_left ▸ !neg_add_cancel_left ▸ H' qed section variables [s : ordered_comm_group A] (a b c d e : A) include s theorem neg_le_neg_of_le {a b : A} (H : a ≤ b) : -b ≤ -a := have H1 : 0 ≤ -a + b, from !add.left_inv ▸ !(add_le_add_left H), !add_neg_cancel_right ▸ !add.left_id ▸ add_le_add_right H1 (-b) -- !add.left_id ▸ !add_neg_cancel_right ▸ add_le_add_right H1 (-b) -- doesn't work? theorem neg_le_neg_iff_le : -a ≤ -b ↔ b ≤ a := iff.intro (take H, neg_neg_eq a ▸ neg_neg_eq b ▸ neg_le_neg_of_le H) neg_le_neg_of_le theorem neg_nonpos_iff_nonneg : -a ≤ 0 ↔ 0 ≤ a := neg_zero_eq ▸ neg_le_neg_iff_le a 0 theorem neg_nonneg_iff_nonpos : 0 ≤ -a ↔ a ≤ 0 := neg_zero_eq ▸ neg_le_neg_iff_le 0 a theorem neg_lt_neg_of_lt {a b : A} (H : a < b) : -b < -a := have H1 : 0 < -a + b, from !add.left_inv ▸ !(add_lt_add_left H), !add_neg_cancel_right ▸ !add.left_id ▸ add_lt_add_right H1 (-b) theorem neg_lt_neg_iff_lt : -a < -b ↔ b < a := iff.intro (take H, neg_neg_eq a ▸ neg_neg_eq b ▸ neg_lt_neg_of_lt H) neg_lt_neg_of_lt theorem neg_neg_iff_pos : -a < 0 ↔ 0 < a := neg_zero_eq ▸ neg_lt_neg_iff_lt a 0 theorem neg_pos_iff_neg : 0 < -a ↔ a < 0 := neg_zero_eq ▸ neg_lt_neg_iff_lt 0 a theorem le_neg_iff_le_neg : a ≤ -b ↔ b ≤ -a := !neg_neg_eq ▸ !neg_le_neg_iff_le theorem neg_le_iff_neg_le : -a ≤ b ↔ -b ≤ a := !neg_neg_eq ▸ !neg_le_neg_iff_le theorem lt_neg_iff_lt_neg : a < -b ↔ b < -a := !neg_neg_eq ▸ !neg_lt_neg_iff_lt theorem neg_lt_iff_neg_lt : -a < b ↔ -b < a := !neg_neg_eq ▸ !neg_lt_neg_iff_lt theorem sub_nonneg_iff_le : 0 ≤ a - b ↔ b ≤ a := !sub_self ▸ !add_le_add_right_iff theorem sub_nonpos_iff_le : a - b ≤ 0 ↔ a ≤ b := !sub_self ▸ !add_le_add_right_iff theorem sub_pos_iff_lt : 0 < a - b ↔ b < a := !sub_self ▸ !add_lt_add_right_iff theorem sub_neg_iff_lt : a - b < 0 ↔ a < b := !sub_self ▸ !add_lt_add_right_iff theorem add_le_iff_le_neg_add : a + b ≤ c ↔ b ≤ -a + c := have H: a + b ≤ c ↔ -a + (a + b) ≤ -a + c, from iff.symm (!add_le_add_left_iff), !neg_add_cancel_left ▸ H theorem add_le_iff_le_sub_left : a + b ≤ c ↔ b ≤ c - a := !add.comm ▸ !add_le_iff_le_neg_add theorem add_le_iff_le_sub_right : a + b ≤ c ↔ a ≤ c - b := have H: a + b ≤ c ↔ a + b - b ≤ c - b, from iff.symm (!add_le_add_right_iff), !add_neg_cancel_right ▸ H theorem le_add_iff_neg_add_le : a ≤ b + c ↔ -b + a ≤ c := have H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff), !neg_add_cancel_left ▸ H theorem le_add_iff_sub_left_le : a ≤ b + c ↔ a - b ≤ c := !add.comm ▸ !le_add_iff_neg_add_le theorem le_add_iff_sub_right_le : a ≤ b + c ↔ a - c ≤ b := have H: a ≤ b + c ↔ a - c ≤ b + c - c, from iff.symm (!add_le_add_right_iff), !add_neg_cancel_right ▸ H theorem add_lt_add_iff_lt_neg_add : a + b < c ↔ b < -a + c := have H: a + b < c ↔ -a + (a + b) < -a + c, from iff.symm (!add_lt_add_left_iff), !neg_add_cancel_left ▸ H theorem add_lt_add_iff_lt_sub_left : a + b < c ↔ b < c - a := !add.comm ▸ !add_lt_add_iff_lt_neg_add theorem add_lt_add_iff_lt_sub_right : a + b < c ↔ a < c - b := have H: a + b < c ↔ a + b - b < c - b, from iff.symm (!add_lt_add_right_iff), !add_neg_cancel_right ▸ H theorem lt_add_iff_neg_add_lt_add : a < b + c ↔ -b + a < c := have H: a < b + c ↔ -b + a < -b + (b + c), from iff.symm (!add_lt_add_left_iff), !neg_add_cancel_left ▸ H theorem lt_add_iff_sub_left_lt : a < b + c ↔ a - b < c := !add.comm ▸ !lt_add_iff_neg_add_lt_add theorem lt_add_iff_sub_right_lt : a < b + c ↔ a - c < b := have H: a < b + c ↔ a - c < b + c - c, from iff.symm (!add_lt_add_right_iff), !add_neg_cancel_right ▸ H -- TODO: the Isabelle library has varations on a + b ≤ b ↔ a ≤ 0 theorem le_iff_le_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a ≤ b ↔ c ≤ d := calc a ≤ b ↔ a - b ≤ 0 : iff.symm (sub_nonpos_iff_le a b) ... ↔ c - d ≤ 0 : H ▸ !iff.refl ... ↔ c ≤ d : sub_nonpos_iff_le c d theorem lt_iff_lt_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a < b ↔ c < d := calc a < b ↔ a - b < 0 : iff.symm (sub_neg_iff_lt a b) ... ↔ c - d < 0 : H ▸ !iff.refl ... ↔ c < d : sub_neg_iff_lt c d theorem sub_le_sub_left {a b : A} (H : a ≤ b) (c : A) : c - b ≤ c - a := add_le_add_left (neg_le_neg_of_le H) c theorem sub_le_sub_right {a b : A} (H : a ≤ b) (c : A) : a - c ≤ b - c := add_le_add_right H (-c) theorem sub_le_sub {a b c d : A} (Hab : a ≤ b) (Hcd : c ≤ d) : a - d ≤ b - c := add_le_add Hab (neg_le_neg_of_le Hcd) theorem sub_lt_sub_left {a b : A} (H : a < b) (c : A) : c - b < c - a := add_lt_add_left (neg_lt_neg_of_lt H) c theorem sub_lt_sub_right {a b : A} (H : a < b) (c : A) : a - c < b - c := add_lt_add_right H (-c) theorem sub_lt_sub_of_lt_of_lt {a b c d : A} (Hab : a < b) (Hcd : c < d) : a - d < b - c := add_lt_add_of_lt_of_lt Hab (neg_lt_neg_of_lt Hcd) theorem sub_lt_sub_of_le_of_lt {a b c d : A} (Hab : a ≤ b) (Hcd : c < d) : a - d < b - c := add_lt_add_of_le_of_lt Hab (neg_lt_neg_of_lt Hcd) theorem sub_lt_sub_of_lt_of_le {a b c d : A} (Hab : a < b) (Hcd : c ≤ d) : a - d < b - c := add_lt_add_of_lt_of_le Hab (neg_le_neg_of_le Hcd) end -- TODO: additional facts if the ordering is a linear ordering (e.g. -a = a ↔ a = 0) -- TODO: structures with abs end algebra