-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Jeremy Avigad, Floris van Doorn -- Ported from Coq HoTT import .path .logic data.nat.basic data.empty data.unit data.sigma .equiv open path nat sigma unit set_option pp.universes true -- Truncation levels -- ----------------- -- TODO: make everything universe polymorphic -- TODO: everything definition with a hprop as codomain can be a theorem? /- truncation indices -/ namespace truncation inductive trunc_index : Type₁ := minus_two : trunc_index, trunc_S : trunc_index → trunc_index postfix `.+1`:(max+1) := trunc_index.trunc_S postfix `.+2`:(max+1) := λn, (n .+1 .+1) notation `-2` := trunc_index.minus_two notation `-1` := (-2.+1) namespace trunc_index definition add (n m : trunc_index) : trunc_index := trunc_index.rec_on m n (λ k l, l .+1) definition leq (n m : trunc_index) : Type₁ := trunc_index.rec_on n (λm, unit) (λ n p m, trunc_index.rec_on m (λ p, empty) (λ m q p, p m) p) m end trunc_index -- Coq calls this `-2+`, but `+2+` looks more natural, since trunc_index_add 0 0 = 2 infix `+2+`:65 := trunc_index.add notation x <= y := trunc_index.leq x y notation x ≤ y := trunc_index.leq x y namespace trunc_index definition succ_le {n m : trunc_index} (H : n ≤ m) : n.+1 ≤ m.+1 := H definition succ_le_cancel {n m : trunc_index} (H : n.+1 ≤ m.+1) : n ≤ m := H definition minus_two_le (n : trunc_index) : -2 ≤ n := star definition not_succ_le_minus_two {n : trunc_index} (H : n .+1 ≤ -2) : empty := H end trunc_index definition nat_to_trunc_index [coercion] (n : nat) : trunc_index := nat.rec_on n (-1.+1) (λ n k, k.+1) /- truncated types -/ /- Just as in Coq HoTT we define an internal version of contractibility and is_trunc, but we only use `is_trunc` and `is_contr` -/ structure contr_internal (A : Type) := (center : A) (contr : Π(a : A), center ≈ a) definition is_trunc_internal (n : trunc_index) : Type → Type := trunc_index.rec_on n (λA, contr_internal A) (λn trunc_n A, (Π(x y : A), trunc_n (x ≈ y))) structure is_trunc [class] (n : trunc_index) (A : Type) := (to_internal : is_trunc_internal n A) -- should this be notation or definitions? notation `is_contr` := is_trunc -2 notation `is_hprop` := is_trunc -1 notation `is_hset` := is_trunc nat.zero -- definition is_contr := is_trunc -2 -- definition is_hprop := is_trunc -1 -- definition is_hset := is_trunc 0 variables {A B : Type} -- maybe rename to is_trunc_succ.mk definition is_trunc_succ (A : Type) {n : trunc_index} [H : ∀x y : A, is_trunc n (x ≈ y)] : is_trunc n.+1 A := is_trunc.mk (λ x y, !is_trunc.to_internal) -- maybe rename to is_trunc_succ.elim definition succ_is_trunc {n : trunc_index} [H : is_trunc (n.+1) A] (x y : A) : is_trunc n (x ≈ y) := is_trunc.mk (!is_trunc.to_internal x y) /- contractibility -/ definition is_contr.mk (center : A) (contr : Π(a : A), center ≈ a) : is_contr A := is_trunc.mk (contr_internal.mk center contr) definition center (A : Type) [H : is_contr A] : A := @contr_internal.center A !is_trunc.to_internal definition contr [H : is_contr A] (a : A) : !center ≈ a := @contr_internal.contr A !is_trunc.to_internal a definition path_contr [H : is_contr A] (x y : A) : x ≈ y := contr x⁻¹ ⬝ (contr y) definition path2_contr {A : Type} [H : is_contr A] {x y : A} (p q : x ≈ y) : p ≈ q := have K : ∀ (r : x ≈ y), path_contr x y ≈ r, from (λ r, path.rec_on r !concat_Vp), K p⁻¹ ⬝ K q definition contr_paths_contr [instance] {A : Type} [H : is_contr A] (x y : A) : is_contr (x ≈ y) := is_contr.mk !path_contr (λ p, !path2_contr) /- truncation is upward close -/ -- n-types are also (n+1)-types definition trunc_succ [instance] (A : Type) (n : trunc_index) [H : is_trunc n A] : is_trunc (n.+1) A := trunc_index.rec_on n (λ A (H : is_contr A), !is_trunc_succ) (λ n IH A (H : is_trunc (n.+1) A), @is_trunc_succ _ _ (λ x y, IH _ !succ_is_trunc)) A H --in the proof the type of H is given explicitly to make it available for class inference definition trunc_leq (A : Type) (n m : trunc_index) (Hnm : n ≤ m) [Hn : is_trunc n A] : is_trunc m A := have base : ∀k A, k ≤ -2 → is_trunc k A → (is_trunc -2 A), from λ k A, trunc_index.cases_on k (λh1 h2, h2) (λk h1 h2, empty.elim (is_trunc -2 A) (trunc_index.not_succ_le_minus_two h1)), have step : Π (m : trunc_index) (IHm : Π (n : trunc_index) (A : Type), n ≤ m → is_trunc n A → is_trunc m A) (n : trunc_index) (A : Type) (Hnm : n ≤ m .+1) (Hn : is_trunc n A), is_trunc m .+1 A, from λm IHm n, trunc_index.rec_on n (λA Hnm Hn, @trunc_succ A m (IHm -2 A star Hn)) (λn IHn A Hnm (Hn : is_trunc n.+1 A), @is_trunc_succ A m (λx y, IHm n (x≈y) (trunc_index.succ_le_cancel Hnm) !succ_is_trunc)), trunc_index.rec_on m base step n A Hnm Hn -- the following cannot be instances in their current form, because it is looping definition trunc_contr (A : Type) (n : trunc_index) [H : is_contr A] : is_trunc n A := trunc_index.rec_on n H _ definition trunc_hprop (A : Type) (n : trunc_index) [H : is_hprop A] : is_trunc (n.+1) A := trunc_leq A -1 (n.+1) star definition trunc_hset (A : Type) (n : trunc_index) [H : is_hset A] : is_trunc (n.+2) A := trunc_leq A 0 (n.+2) star /- hprops -/ definition is_hprop.elim [H : is_hprop A] (x y : A) : x ≈ y := @center _ !succ_is_trunc definition contr_inhabited_hprop {A : Type} [H : is_hprop A] (x : A) : is_contr A := is_contr.mk x (λy, !is_hprop.elim) --Coq has the following as instance, but doesn't look too useful definition hprop_inhabited_contr {A : Type} (H : A → is_contr A) : is_hprop A := @is_trunc_succ A -2 (λx y, have H2 [visible] : is_contr A, from H x, !contr_paths_contr) definition is_hprop.mk {A : Type} (H : ∀x y : A, x ≈ y) : is_hprop A := hprop_inhabited_contr (λ x, is_contr.mk x (H x)) /- hsets -/ definition is_hset.mk (A : Type) (H : ∀(x y : A) (p q : x ≈ y), p ≈ q) : is_hset A := @is_trunc_succ _ _ (λ x y, is_hprop.mk (H x y)) definition is_hset.elim [H : is_hset A] ⦃x y : A⦄ (p q : x ≈ y) : p ≈ q := @is_hprop.elim _ !succ_is_trunc p q /- instances -/ definition contr_basedpaths [instance] {A : Type} (a : A) : is_contr (Σ(x : A), a ≈ x) := is_contr.mk (dpair a idp) (λp, sigma.rec_on p (λ b q, path.rec_on q idp)) -- definition is_trunc_is_hprop [instance] {n : trunc_index} : is_hprop (is_trunc n A) := sorry definition unit_contr [instance] : is_contr unit := is_contr.mk star (λp, unit.rec_on p idp) definition empty_hprop [instance] : is_hprop empty := is_hprop.mk (λx, !empty.elim x) /- truncated universe -/ structure trunctype (n : trunc_index) := (trunctype_type : Type) (is_trunc_trunctype_type : is_trunc n trunctype_type) coercion trunctype.trunctype_type notation n `-Type` := trunctype n notation `hprop` := -1-Type notation `hset` := 0-Type definition hprop.mk := @trunctype.mk -1 definition hset.mk := @trunctype.mk 0 --what does the following line in Coq do? --Canonical Structure default_TruncType := fun n T P => (@BuildTruncType n T P). /- interaction with equivalences -/ section open is_equiv equiv --should we remove the following two theorems as they are special cases of "trunc_equiv" definition equiv_preserves_contr (f : A → B) [Hf : is_equiv f] [HA: is_contr A] : (is_contr B) := is_contr.mk (f (center A)) (λp, moveR_M f !contr) theorem contr_equiv (H : A ≃ B) [HA: is_contr A] : is_contr B := @equiv_preserves_contr _ _ (to_fun H) (to_is_equiv H) _ definition contr_equiv_contr [HA : is_contr A] [HB : is_contr B] : A ≃ B := equiv.mk (λa, center B) (is_equiv.adjointify (λa, center B) (λb, center A) contr contr) definition trunc_equiv (n : trunc_index) (f : A → B) [H : is_equiv f] [HA : is_trunc n A] : is_trunc n B := trunc_index.rec_on n (λA (HA : is_contr A) B f (H : is_equiv f), !equiv_preserves_contr) (λn IH A (HA : is_trunc n.+1 A) B f (H : is_equiv f), @is_trunc_succ _ _ (λ x y : B, IH (f⁻¹ x ≈ f⁻¹ y) !succ_is_trunc (x ≈ y) ((ap (f⁻¹))⁻¹) !inv_closed)) A HA B f H definition trunc_equiv' (n : trunc_index) (f : A ≃ B) [HA : is_trunc n A] : is_trunc n B := trunc_equiv n (to_fun f) definition isequiv_iff_hprop [HA : is_hprop A] [HB : is_hprop B] (f : A → B) (g : B → A) : is_equiv f := is_equiv.adjointify f g (λb, !is_hprop.elim) (λa, !is_hprop.elim) -- definition equiv_iff_hprop_uncurried [HA : is_hprop A] [HB : is_hprop B] : (A ↔ B) → (A ≃ B) := sorry definition equiv_iff_hprop [HA : is_hprop A] [HB : is_hprop B] (f : A → B) (g : B → A) : A ≃ B := equiv.mk f (isequiv_iff_hprop f g) end /- interaction with the Unit type -/ -- A contractible type is equivalent to [Unit]. *) definition equiv_contr_unit [H : is_contr A] : A ≃ unit := equiv.mk (λ (x : A), ⋆) (is_equiv.mk (λ (u : unit), center A) (λ (u : unit), unit.rec_on u idp) (λ (x : A), contr x) (λ (x : A), (!ap_const)⁻¹)) -- TODO: port "Truncated morphisms" end truncation