/* Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include "kernel/find_fn.h" #include "kernel/instantiate.h" #include "kernel/type_checker.h" #include "kernel/inductive/inductive.h" namespace lean { /** \brief Return true if environment has a constructor named \c c that returns an element of the inductive datatype named \c I, and \c c must have \c nparams parameters. */ bool has_constructor(environment const & env, name const & c, name const & I, unsigned nparams) { auto d = env.find(c); if (!d || d->is_definition()) return false; expr type = d->get_type(); unsigned i = 0; while (is_pi(type)) { i++; type = binding_body(type); } if (i != nparams) return false; type = get_app_fn(type); return is_constant(type) && const_name(type) == I; } bool has_unit_decls(environment const & env) { return has_constructor(env, name{"unit", "star"}, "unit", 0); } bool has_eq_decls(environment const & env) { return has_constructor(env, name{"eq", "refl"}, "eq", 2); } bool has_heq_decls(environment const & env) { return has_constructor(env, name{"heq", "refl"}, "heq", 2); } bool has_prod_decls(environment const & env) { return has_constructor(env, name{"prod", "mk"}, "prod", 4); } bool is_recursive_datatype(environment const & env, name const & n) { optional decls = inductive::is_inductive_decl(env, n); if (!decls) return false; for (inductive::inductive_decl const & decl : std::get<2>(*decls)) { for (inductive::intro_rule const & intro : inductive::inductive_decl_intros(decl)) { expr type = inductive::intro_rule_type(intro); while (is_pi(type)) { if (find(binding_domain(type), [&](expr const & e, unsigned) { return is_constant(e) && const_name(e) == n; })) { return true; } type = binding_body(type); } } } return false; } bool is_reflexive_datatype(type_checker & tc, name const & n) { environment const & env = tc.env(); name_generator ngen = tc.mk_ngen(); optional decls = inductive::is_inductive_decl(env, n); if (!decls) return false; for (inductive::inductive_decl const & decl : std::get<2>(*decls)) { for (inductive::intro_rule const & intro : inductive::inductive_decl_intros(decl)) { expr type = inductive::intro_rule_type(intro); while (is_pi(type)) { expr arg = tc.whnf(binding_domain(type)).first; if (is_pi(arg) && find(arg, [&](expr const & e, unsigned) { return is_constant(e) && const_name(e) == n; })) { return true; } expr local = mk_local(ngen.next(), binding_domain(type)); type = instantiate(binding_body(type), local); } } } return false; } level get_datatype_level(expr ind_type) { while (is_pi(ind_type)) ind_type = binding_body(ind_type); return sort_level(ind_type); } bool is_inductive_predicate(environment const & env, name const & n) { if (!env.impredicative()) return false; // environment does not have Prop if (!inductive::is_inductive_decl(env, n)) return false; // n is not inductive datatype return is_zero(get_datatype_level(env.get(n).get_type())); } expr instantiate_univ_param (expr const & e, name const & p, level const & l) { return instantiate_univ_params(e, to_list(p), to_list(l)); } expr to_telescope(name_generator & ngen, expr type, buffer & telescope, optional const & binfo) { while (is_pi(type)) { expr local; if (binfo) local = mk_local(ngen.next(), binding_name(type), binding_domain(type), *binfo); else local = mk_local(ngen.next(), binding_name(type), binding_domain(type), binding_info(type)); telescope.push_back(local); type = instantiate(binding_body(type), local); } return type; } expr to_telescope(type_checker & tc, expr type, buffer & telescope, optional const & binfo) { type = tc.whnf(type).first; while (is_pi(type)) { expr local; if (binfo) local = mk_local(tc.mk_fresh_name(), binding_name(type), binding_domain(type), *binfo); else local = mk_local(tc.mk_fresh_name(), binding_name(type), binding_domain(type), binding_info(type)); telescope.push_back(local); type = tc.whnf(instantiate(binding_body(type), local)).first; } return type; } static expr * g_true = nullptr; static expr * g_and = nullptr; static expr * g_and_intro = nullptr; static expr * g_and_elim_left = nullptr; static expr * g_and_elim_right = nullptr; static name * g_unit = nullptr; static name * g_prod_name = nullptr; static name * g_prod_mk_name = nullptr; static name * g_pr1_name = nullptr; static name * g_pr2_name = nullptr; void initialize_definitional_util() { g_true = new expr(mk_constant("true")); g_and = new expr(mk_constant("and")); g_and_intro = new expr(mk_constant({"and", "intro"})); g_and_elim_left = new expr(mk_constant({"and", "elim_left"})); g_and_elim_right = new expr(mk_constant({"and", "elim_right"})); g_unit = new name("unit"); g_prod_name = new name("prod"); g_prod_mk_name = new name{"prod", "mk"}; g_pr1_name = new name{"prod", "pr1"}; g_pr2_name = new name{"prod", "pr2"}; } void finalize_definitional_util() { delete g_true; delete g_and; delete g_and_intro; delete g_and_elim_left; delete g_and_elim_right; delete g_unit; delete g_prod_name; delete g_prod_mk_name; delete g_pr1_name; delete g_pr2_name; } expr mk_true() { return *g_true; } expr mk_and(expr const & a, expr const & b) { return mk_app(*g_and, a, b); } expr mk_and_intro(type_checker & tc, expr const & Ha, expr const & Hb) { return mk_app(*g_and_intro, tc.infer(Ha).first, tc.infer(Hb).first, Ha, Hb); } expr mk_and_elim_left(type_checker & tc, expr const & H) { expr a_and_b = tc.whnf(tc.infer(H).first).first; return mk_app(*g_and_elim_left, app_arg(app_fn(a_and_b)), app_arg(a_and_b), H); } expr mk_and_elim_right(type_checker & tc, expr const & H) { expr a_and_b = tc.whnf(tc.infer(H).first).first; return mk_app(*g_and_elim_right, app_arg(app_fn(a_and_b)), app_arg(a_and_b), H); } expr mk_unit(level const & l) { return mk_constant(*g_unit, {l}); } expr mk_prod(type_checker & tc, expr const & A, expr const & B) { level l1 = sort_level(tc.ensure_type(A).first); level l2 = sort_level(tc.ensure_type(B).first); return mk_app(mk_constant(*g_prod_name, {l1, l2}), A, B); } expr mk_pair(type_checker & tc, expr const & a, expr const & b) { expr A = tc.infer(a).first; expr B = tc.infer(b).first; level l1 = sort_level(tc.ensure_type(A).first); level l2 = sort_level(tc.ensure_type(B).first); return mk_app(mk_constant(*g_prod_mk_name, {l1, l2}), A, B, a, b); } expr mk_pr1(type_checker & tc, expr const & p) { expr AxB = tc.whnf(tc.infer(p).first).first; expr const & A = app_arg(app_fn(AxB)); expr const & B = app_arg(AxB); return mk_app(mk_constant(*g_pr1_name, const_levels(AxB)), A, B, p); } expr mk_pr2(type_checker & tc, expr const & p) { expr AxB = tc.whnf(tc.infer(p).first).first; expr const & A = app_arg(app_fn(AxB)); expr const & B = app_arg(AxB); return mk_app(mk_constant(*g_pr2_name, const_levels(AxB)), A, B, p); } expr mk_unit(level const & l, bool prop) { if (prop) return mk_true(); else return mk_unit(l); } expr mk_prod(type_checker & tc, expr const & a, expr const & b, bool prop) { if (prop) return mk_and(a, b); else return mk_prod(tc, a, b); } expr mk_pair(type_checker & tc, expr const & a, expr const & b, bool prop) { if (prop) return mk_and_intro(tc, a, b); else return mk_pair(tc, a, b); } expr mk_pr1(type_checker & tc, expr const & p, bool prop) { if (prop) return mk_and_elim_left(tc, p); else return mk_pr1(tc, p); } expr mk_pr2(type_checker & tc, expr const & p, bool prop) { if (prop) return mk_and_elim_right(tc, p); else return mk_pr2(tc, p); } }