---------------------------------------------------------------------------------------------------- --- Copyright (c) 2014 Parikshit Khanna. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Authors: Parikshit Khanna, Jeremy Avigad ---------------------------------------------------------------------------------------------------- -- Theory list -- =========== -- -- Basic properties of lists. import tools.tactic import data.nat import logic tools.helper_tactics -- import if -- for find open nat open eq_ops open helper_tactics inductive list (T : Type) : Type := nil {} : list T, cons : T → list T → list T namespace list -- Type -- ---- infix `::` := cons section variable {T : Type} theorem induction_on [protected] {P : list T → Prop} (l : list T) (Hnil : P nil) (Hind : forall x : T, forall l : list T, forall H : P l, P (cons x l)) : P l := rec Hnil Hind l theorem cases_on [protected] {P : list T → Prop} (l : list T) (Hnil : P nil) (Hcons : forall x : T, forall l : list T, P (cons x l)) : P l := induction_on l Hnil (take x l IH, Hcons x l) notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l -- Concat -- ------ definition concat (s t : list T) : list T := rec t (fun x : T, fun l : list T, fun u : list T, cons x u) s infixl `++` : 65 := concat theorem nil_concat {t : list T} : nil ++ t = t theorem cons_concat {x : T} {s t : list T} : (x :: s) ++ t = x :: (s ++ t) theorem concat_nil {t : list T} : t ++ nil = t := induction_on t rfl (take (x : T) (l : list T) (H : concat l nil = l), show concat (cons x l) nil = cons x l, from H ▸ rfl) theorem concat_assoc {s t u : list T} : s ++ t ++ u = s ++ (t ++ u) := induction_on s rfl (take x l, assume H : concat (concat l t) u = concat l (concat t u), calc concat (concat (cons x l) t) u = cons x (concat (concat l t) u) : rfl ... = cons x (concat l (concat t u)) : {H} ... = concat (cons x l) (concat t u) : rfl) -- Length -- ------ definition length : list T → ℕ := rec 0 (fun x l m, succ m) theorem length_nil : length (@nil T) = 0 := rfl theorem length_cons {x : T} {t : list T} : length (x :: t) = succ (length t) theorem length_concat {s t : list T} : length (s ++ t) = length s + length t := induction_on s (calc length (concat nil t) = length t : rfl ... = zero + length t : {add_zero_left⁻¹} ... = length (@nil T) + length t : rfl) (take x s, assume H : length (concat s t) = length s + length t, calc length (concat (cons x s) t ) = succ (length (concat s t)) : rfl ... = succ (length s + length t) : {H} ... = succ (length s) + length t : {add_succ_left⁻¹} ... = length (cons x s) + length t : rfl) -- add_rewrite length_nil length_cons -- Append -- ------ definition append (x : T) : list T → list T := rec [x] (fun y l l', y :: l') theorem append_nil {x : T} : append x nil = [x] theorem append_cons {x y : T} {l : list T} : append x (y :: l) = y :: (append x l) theorem append_eq_concat {x : T} {l : list T} : append x l = l ++ [x] -- add_rewrite append_nil append_cons -- Reverse -- ------- definition reverse : list T → list T := rec nil (fun x l r, r ++ [x]) theorem reverse_nil : reverse (@nil T) = nil theorem reverse_cons {x : T} {l : list T} : reverse (x :: l) = append x (reverse l) theorem reverse_singleton {x : T} : reverse [x] = [x] theorem reverse_concat {s t : list T} : reverse (s ++ t) = (reverse t) ++ (reverse s) := induction_on s (concat_nil⁻¹) (take x s, assume IH : reverse (s ++ t) = concat (reverse t) (reverse s), calc reverse ((x :: s) ++ t) = reverse (s ++ t) ++ [x] : rfl ... = reverse t ++ reverse s ++ [x] : {IH} ... = reverse t ++ (reverse s ++ [x]) : concat_assoc ... = reverse t ++ (reverse (x :: s)) : rfl) theorem reverse_reverse {l : list T} : reverse (reverse l) = l := induction_on l rfl (take x l', assume H: reverse (reverse l') = l', show reverse (reverse (x :: l')) = x :: l', from calc reverse (reverse (x :: l')) = reverse (reverse l' ++ [x]) : rfl ... = reverse [x] ++ reverse (reverse l') : reverse_concat ... = [x] ++ l' : {H} ... = x :: l' : rfl) theorem append_eq_reverse_cons {x : T} {l : list T} : append x l = reverse (x :: reverse l) := induction_on l rfl (take y l', assume H : append x l' = reverse (x :: reverse l'), calc append x (y :: l') = (y :: l') ++ [ x ] : append_eq_concat ... = concat (reverse (reverse (y :: l'))) [ x ] : {reverse_reverse⁻¹} ... = reverse (x :: (reverse (y :: l'))) : rfl) -- Head and tail -- ------------- definition head (x : T) : list T → T := rec x (fun x l h, x) theorem head_nil {x : T} : head x (@nil T) = x theorem head_cons {x x' : T} {t : list T} : head x' (x :: t) = x theorem head_concat {s t : list T} {x : T} : s ≠ nil → (head x (s ++ t) = head x s) := cases_on s (take H : nil ≠ nil, absurd rfl H) (take x s, take H : cons x s ≠ nil, calc head x (concat (cons x s) t) = head x (cons x (concat s t)) : {cons_concat} ... = x : {head_cons} ... = head x (cons x s) : {head_cons⁻¹}) definition tail : list T → list T := rec nil (fun x l b, l) theorem tail_nil : tail (@nil T) = nil theorem tail_cons {x : T} {l : list T} : tail (cons x l) = l theorem cons_head_tail {x : T} {l : list T} : l ≠ nil → (head x l) :: (tail l) = l := cases_on l (assume H : nil ≠ nil, absurd rfl H) (take x l, assume H : cons x l ≠ nil, rfl) -- List membership -- --------------- definition mem (x : T) : list T → Prop := rec false (fun y l H, x = y ∨ H) infix `∈` := mem -- TODO: constructively, equality is stronger. Use that? theorem mem_nil {x : T} : x ∈ nil ↔ false := iff.rfl theorem mem_cons {x y : T} {l : list T} : mem x (cons y l) ↔ (x = y ∨ mem x l) := iff.rfl theorem mem_concat_imp_or {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t := induction_on s or.inr (take y s, assume IH : x ∈ s ++ t → x ∈ s ∨ x ∈ t, assume H1 : x ∈ (y :: s) ++ t, have H2 : x = y ∨ x ∈ s ++ t, from H1, have H3 : x = y ∨ x ∈ s ∨ x ∈ t, from or.imp_or_right H2 IH, iff.elim_right or.assoc H3) theorem mem_or_imp_concat {x : T} {s t : list T} : x ∈ s ∨ x ∈ t → x ∈ s ++ t := induction_on s (take H, or.elim H false_elim (assume H, H)) (take y s, assume IH : x ∈ s ∨ x ∈ t → x ∈ s ++ t, assume H : x ∈ y :: s ∨ x ∈ t, or.elim H (assume H1, or.elim H1 (take H2 : x = y, or.inl H2) (take H2 : x ∈ s, or.inr (IH (or.inl H2)))) (assume H1 : x ∈ t, or.inr (IH (or.inr H1)))) theorem mem_concat {x : T} {s t : list T} : x ∈ s ++ t ↔ x ∈ s ∨ x ∈ t := iff.intro mem_concat_imp_or mem_or_imp_concat theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x :: t) := induction_on l (take H : x ∈ nil, false_elim (iff.elim_left mem_nil H)) (take y l, assume IH : x ∈ l → ∃s t : list T, l = s ++ (x :: t), assume H : x ∈ y :: l, or.elim H (assume H1 : x = y, exists_intro nil (exists_intro l (H1 ▸ rfl))) (assume H1 : x ∈ l, obtain s (H2 : ∃t : list T, l = s ++ (x :: t)), from IH H1, obtain t (H3 : l = s ++ (x :: t)), from H2, have H4 : y :: l = (y :: s) ++ (x :: t), from H3 ▸ rfl, exists_intro _ (exists_intro _ H4))) -- Find -- ---- -- to do this: need decidability of = for nat -- definition find (x : T) : list T → nat -- := rec 0 (fun y l b, if x = y then 0 else succ b) -- theorem find_nil (f : T) : find f nil = 0 -- :=refl _ -- theorem find_cons (x y : T) (l : list T) : find x (cons y l) = -- if x = y then 0 else succ (find x l) -- := refl _ -- theorem not_mem_find (l : list T) (x : T) : ¬ mem x l → find x l = length l -- := -- @induction_on T (λl, ¬ mem x l → find x l = length l) l -- -- induction_on l -- (assume P1 : ¬ mem x nil, -- show find x nil = length nil, from -- calc -- find x nil = 0 : find_nil _ -- ... = length nil : by simp) -- (take y l, -- assume IH : ¬ (mem x l) → find x l = length l, -- assume P1 : ¬ (mem x (cons y l)), -- have P2 : ¬ (mem x l ∨ (y = x)), from subst P1 (mem_cons _ _ _), -- have P3 : ¬ (mem x l) ∧ (y ≠ x),from subst P2 (not_or _ _), -- have P4 : x ≠ y, from ne_symm (and.elim_right P3), -- calc -- find x (cons y l) = succ (find x l) : -- trans (find_cons _ _ _) (not_imp_if_eq P4 _ _) -- ... = succ (length l) : {IH (and.elim_left P3)} -- ... = length (cons y l) : symm (length_cons _ _)) -- nth element -- ----------- definition nth (x : T) (l : list T) (n : ℕ) : T := nat.rec (λl, head x l) (λm f l, f (tail l)) n l theorem nth_zero {x : T} {l : list T} : nth x l 0 = head x l theorem nth_succ {x : T} {l : list T} {n : ℕ} : nth x l (succ n) = nth x (tail l) n end end list