-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn import .basic .constructions open eq eq.ops category functor natural_transformation category.ops prod category.product namespace adjoint --representable functor definition foo {obC : Type} (C : category obC) : C ×c C ⇒ C ×c C := functor.id definition Hom {obC : Type} (C : category obC) : Cᵒᵖ ×c C ⇒ type := @functor.mk _ _ _ _ (λ a, hom (pr1 a) (pr2 a)) (λ a b f h, pr2 f ∘ h ∘ pr1 f) (λ a, funext (λh, !id_left ⬝ !id_right)) (λ a b c g f, funext (λh, show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry)) --I'm lazy, waiting for automation to fill this section parameters {obC obD : Type} (C : category obC) {D : category obD} definition adjoint (F : C ⇒ D) (G : D ⇒ C) := natural_transformation (@functor.compose _ _ _ _ _ _ (Hom D) sorry) --(Hom C ∘f sorry) --product.prod_functor (opposite.opposite_functor F) (functor.ID D) end end adjoint