/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Metric spaces. -/ import data.real.division open real eq.ops classical structure metric_space [class] (M : Type) : Type := (dist : M → M → ℝ) (dist_self : ∀ x : M, dist x x = 0) (eq_of_dist_eq_zero : ∀ {x y : M}, dist x y = 0 → x = y) (dist_comm : ∀ x y : M, dist x y = dist y x) (dist_triangle : ∀ x y z : M, dist x y + dist y z ≥ dist x z) namespace metric_space section metric_space_M variables {M : Type} [strucM : metric_space M] include strucM proposition dist_eq_zero_iff (x y : M) : dist x y = 0 ↔ x = y := iff.intro eq_of_dist_eq_zero (suppose x = y, this ▸ !dist_self) proposition dist_nonneg (x y : M) : 0 ≤ dist x y := have dist x y + dist y x ≥ 0, by rewrite -(dist_self x); apply dist_triangle, have 2 * dist x y ≥ 0, using this, by rewrite [-real.one_add_one, right_distrib, +one_mul, dist_comm at {2}]; apply this, nonneg_of_mul_nonneg_left this two_pos proposition dist_pos_of_ne {x y : M} (H : x ≠ y) : dist x y > 0 := lt_of_le_of_ne !dist_nonneg (suppose 0 = dist x y, H (iff.mp !dist_eq_zero_iff this⁻¹)) proposition eq_of_forall_dist_le {x y : M} (H : ∀ ε, ε > 0 → dist x y ≤ ε) : x = y := eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H) open nat /- convergence of a sequence -/ definition converges_to_seq (X : ℕ → M) (y : M) : Prop := ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ ⦃n⦄, n ≥ N → dist (X n) y < ε -- the same, with ≤ in place of <; easier to prove, harder to use definition converges_to_seq.intro {X : ℕ → M} {y : M} (H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → dist (X n) y ≤ ε) : converges_to_seq X y := take ε, assume epos : ε > 0, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain N HN, from H e2pos, exists.intro N (take n, suppose n ≥ N, calc dist (X n) y ≤ ε / 2 : HN _ `n ≥ N` ... < ε : div_two_lt_of_pos epos) notation X `⟶` y `in` `ℕ` := converges_to_seq X y definition converges_seq [class] (X : ℕ → M) : Prop := ∃ y, X ⟶ y in ℕ noncomputable definition limit_seq (X : ℕ → M) [H : converges_seq X] : M := some H proposition converges_to_limit_seq (X : ℕ → M) [H : converges_seq X] : (X ⟶ limit_seq X in ℕ) := some_spec H proposition converges_to_seq_unique {X : ℕ → M} {y₁ y₂ : M} (H₁ : X ⟶ y₁ in ℕ) (H₂ : X ⟶ y₂ in ℕ) : y₁ = y₂ := eq_of_forall_dist_le (take ε, suppose ε > 0, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2), from H₁ e2pos, obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2), from H₂ e2pos, let N := max N₁ N₂ in have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left, have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right, have dist y₁ y₂ < ε, from calc dist y₁ y₂ ≤ dist y₁ (X N) + dist (X N) y₂ : dist_triangle ... = dist (X N) y₁ + dist (X N) y₂ : dist_comm ... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂ ... = ε : add_halves, show dist y₁ y₂ ≤ ε, from le_of_lt this) proposition eq_limit_of_converges_to_seq {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) : y = @limit_seq M _ X (exists.intro y H) := converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H)) proposition converges_to_seq_constant (y : M) : (λn, y) ⟶ y in ℕ := take ε, assume egt0 : ε > 0, exists.intro 0 (take n, suppose n ≥ 0, calc dist y y = 0 : !dist_self ... < ε : egt0) proposition converges_to_seq_offset {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) : (λ n, X (n + k)) ⟶ y in ℕ := take ε, suppose ε > 0, obtain N HN, from H `ε > 0`, exists.intro N (take n : ℕ, assume ngtN : n ≥ N, show dist (X (n + k)) y < ε, from HN (n + k) (le.trans ngtN !le_add_right)) proposition converges_to_seq_offset_left {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) : (λ n, X (k + n)) ⟶ y in ℕ := have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite nat.add.comm), by+ rewrite aux; exact converges_to_seq_offset k H proposition converges_to_seq_offset_succ {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) : (λ n, X (succ n)) ⟶ y in ℕ := converges_to_seq_offset 1 H proposition converges_to_seq_of_converges_to_seq_offset {X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (n + k)) ⟶ y in ℕ) : X ⟶ y in ℕ := take ε, suppose ε > 0, obtain N HN, from H `ε > 0`, exists.intro (N + k) (take n : ℕ, assume nge : n ≥ N + k, have n - k ≥ N, from le_sub_of_add_le nge, have dist (X (n - k + k)) y < ε, from HN (n - k) this, show dist (X n) y < ε, using this, by rewrite [(nat.sub_add_cancel (le.trans !le_add_left nge)) at this]; exact this) proposition converges_to_seq_of_converges_to_seq_offset_left {X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (k + n)) ⟶ y in ℕ) : X ⟶ y in ℕ := have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite nat.add.comm), by+ rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H proposition converges_to_seq_of_converges_to_seq_offset_succ {X : ℕ → M} {y : M} (H : (λ n, X (succ n)) ⟶ y in ℕ) : X ⟶ y in ℕ := @converges_to_seq_of_converges_to_seq_offset M strucM X y 1 H proposition converges_to_seq_offset_iff (X : ℕ → M) (y : M) (k : ℕ) : ((λ n, X (n + k)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := iff.intro converges_to_seq_of_converges_to_seq_offset !converges_to_seq_offset proposition converges_to_seq_offset_left_iff (X : ℕ → M) (y : M) (k : ℕ) : ((λ n, X (k + n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := iff.intro converges_to_seq_of_converges_to_seq_offset_left !converges_to_seq_offset_left proposition converges_to_seq_offset_succ_iff (X : ℕ → M) (y : M) : ((λ n, X (succ n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := iff.intro converges_to_seq_of_converges_to_seq_offset_succ !converges_to_seq_offset_succ /- cauchy sequences -/ definition cauchy (X : ℕ → M) : Prop := ∀ ε : ℝ, ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε proposition cauchy_of_converges_seq (X : ℕ → M) [H : converges_seq X] : cauchy X := take ε, suppose ε > 0, obtain y (Hy : converges_to_seq X y), from H, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y < ε / 2), from Hy e2pos, obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y < ε / 2), from Hy e2pos, let N := max N₁ N₂ in exists.intro N (take m n, suppose m ≥ N, suppose n ≥ N, have m ≥ N₁, from le.trans !le_max_left `m ≥ N`, have n ≥ N₂, from le.trans !le_max_right `n ≥ N`, have dN₁ : dist (X m) y < ε / 2, from HN₁ `m ≥ N₁`, have dN₂ : dist (X n) y < ε / 2, from HN₂ `n ≥ N₂`, show dist (X m) (X n) < ε, from calc dist (X m) (X n) ≤ dist (X m) y + dist y (X n) : dist_triangle ... = dist (X m) y + dist (X n) y : dist_comm ... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂ ... = ε : add_halves) end metric_space_M /- convergence of a function at a point -/ section metric_space_M_N variables {M N : Type} [strucM : metric_space M] [strucN : metric_space N] include strucM strucN definition converges_to_at (f : M → N) (y : N) (x : M) := ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ x', x ≠ x' ∧ dist x x' < δ → dist (f x') y < ε notation f `⟶` y `at` x := converges_to_at f y x definition converges_at [class] (f : M → N) (x : M) := ∃ y, converges_to_at f y x noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N := some H proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] : (f ⟶ limit_at f x at x) := some_spec H definition continuous_at (f : M → N) (x : M) := converges_to_at f (f x) x definition continuous (f : M → N) := ∀ x, continuous_at f x theorem continuous_at_spec {f : M → N} {x : M} (Hf : continuous_at f x) : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ x', dist x x' < δ → dist (f x') (f x) < ε := take ε, suppose ε > 0, obtain δ Hδ, from Hf this, exists.intro δ (and.intro (and.left Hδ) (take x', suppose dist x x' < δ, if Heq : x = x' then by rewrite [Heq, dist_self]; assumption else (suffices dist x x' < δ, from and.right Hδ x' (and.intro Heq this), this))) theorem image_seq_converges_of_converges [instance] (X : ℕ → M) [HX : converges_seq X] {f : M → N} (Hf : continuous f) : converges_seq (λ n, f (X n)) := begin cases HX with xlim Hxlim, existsi f xlim, rewrite ↑converges_to_seq at *, intros ε Hε, let Hcont := Hf xlim Hε, cases Hcont with δ Hδ, cases Hxlim (and.left Hδ) with B HB, existsi B, intro n Hn, cases em (xlim = X n), rewrite [a, dist_self], assumption, apply and.right Hδ, split, exact a, rewrite dist_comm, apply HB Hn end end metric_space_M_N end metric_space