/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Two sets are equinumerous, or equipollent, if there is a bijection between them. It is sometimes said that two such sets "have the same cardinality." -/ import .classical_inverse data.nat open eq.ops classical nat /- two versions of Cantor's theorem -/ namespace set variables {X : Type} {A : set X} theorem not_surj_on_pow (f : X β†’ set X) : Β¬ surj_on f A (𝒫 A) := let diag := {x ∈ A | x βˆ‰ f x} in have diag βŠ† A, from sep_subset _ _, assume H : surj_on f A (𝒫 A), obtain x [(xA : x ∈ A) (Hx : f x = diag)], from H `diag βŠ† A`, have x βˆ‰ f x, from suppose x ∈ f x, have x ∈ diag, from Hx β–Έ this, have x βˆ‰ f x, from and.right this, show false, from this `x ∈ f x`, have x ∈ diag, from and.intro xA this, have x ∈ f x, from Hx⁻¹ β–Έ this, show false, from `x βˆ‰ f x` this theorem not_inj_on_pow {f : set X β†’ X} (H : maps_to f (𝒫 A) A) : Β¬ inj_on f (𝒫 A) := let diag := f ' {x ∈ 𝒫 A | f x βˆ‰ x} in have diag βŠ† A, from image_subset_of_maps_to_of_subset H (sep_subset _ _), assume H₁ : inj_on f (𝒫 A), have f diag ∈ diag, from by_contradiction (suppose f diag βˆ‰ diag, have diag ∈ {x ∈ 𝒫 A | f x βˆ‰ x}, from and.intro `diag βŠ† A` this, have f diag ∈ diag, from mem_image_of_mem f this, show false, from `f diag βˆ‰ diag` this), obtain x [(Hx : x ∈ 𝒫 A ∧ f x βˆ‰ x) (fxeq : f x = f diag)], from this, have x = diag, from H₁ (and.left Hx) `diag βŠ† A` fxeq, have f diag βˆ‰ diag, from this β–Έ and.right Hx, show false, from this `f diag ∈ diag` end set /- The SchrΓΆder-Bernstein theorem. The proof below is nonconstructive, in three ways: (1) We need a left inverse to g (we could get around this by supplying one). (2) The definition of h below assumes that membership in Union U is decidable. (3) We ultimately case split on whether B is empty, and choose an element if it isn't. Rather than mark every auxiliary construction as "private", we put them all in a separate namespace. -/ namespace schroeder_bernstein section open set parameters {X Y : Type} parameter {A : set X} parameter {B : set Y} parameter {f : X β†’ Y} parameter (f_maps_to : maps_to f A B) parameter (finj : inj_on f A) parameter {g : Y β†’ X} parameter (g_maps_to : maps_to g B A) parameter (ginj : inj_on g B) parameter {dflt : Y} -- for now, assume B is nonempty parameter (dfltB : dflt ∈ B) /- g⁻¹ : A β†’ B -/ noncomputable definition ginv : X β†’ Y := inv_fun g B dflt lemma ginv_maps_to : maps_to ginv A B := maps_to_inv_fun dfltB lemma ginv_g_eq {b : Y} (bB : b ∈ B) : ginv (g b) = b := left_inv_on_inv_fun_of_inj_on dflt ginj bB /- define a sequence of sets U -/ definition U : β„• β†’ set X | U 0 := A \ (g ' B) | U (n + 1) := g ' (f ' (U n)) lemma U_subset_A : βˆ€ n, U n βŠ† A | 0 := show U 0 βŠ† A, from diff_subset _ _ | (n + 1) := have f ' (U n) βŠ† B, from image_subset_of_maps_to_of_subset f_maps_to (U_subset_A n), show U (n + 1) βŠ† A, from image_subset_of_maps_to_of_subset g_maps_to this lemma g_ginv_eq {a : X} (aA : a ∈ A) (anU : a βˆ‰ Union U) : g (ginv a) = a := have a ∈ g ' B, from by_contradiction (suppose a βˆ‰ g ' B, have a ∈ U 0, from and.intro aA this, have a ∈ Union U, from exists.intro 0 this, show false, from anU this), obtain b [(bB : b ∈ B) (gbeq : g b = a)], from this, calc g (ginv a) = g (ginv (g b)) : gbeq ... = g b : ginv_g_eq bB ... = a : gbeq /- h : A β†’ B -/ noncomputable definition h x := if x ∈ Union U then f x else ginv x lemma h_maps_to : maps_to h A B := take a, suppose a ∈ A, show h a ∈ B, from by_cases (suppose a ∈ Union U, by rewrite [↑h, if_pos this]; exact f_maps_to `a ∈ A`) (suppose a βˆ‰ Union U, by rewrite [↑h, if_neg this]; exact ginv_maps_to `a ∈ A`) /- h is injective -/ lemma aux {a₁ aβ‚‚ : X} (H₁ : a₁ ∈ Union U) (aβ‚‚A : aβ‚‚ ∈ A) (heq : h a₁ = h aβ‚‚) : aβ‚‚ ∈ Union U := obtain n (a₁Un : a₁ ∈ U n), from H₁, have ha₁eq : h a₁ = f a₁, from dif_pos H₁, show aβ‚‚ ∈ Union U, from by_contradiction (suppose aβ‚‚ βˆ‰ Union U, have haβ‚‚eq : h aβ‚‚ = ginv aβ‚‚, from dif_neg this, have g (f a₁) = aβ‚‚, from calc g (f a₁) = g (h a₁) : ha₁eq ... = g (h aβ‚‚) : heq ... = g (ginv aβ‚‚) : haβ‚‚eq ... = aβ‚‚ : g_ginv_eq aβ‚‚A `aβ‚‚ βˆ‰ Union U`, have g (f a₁) ∈ g ' (f ' (U n)), from mem_image_of_mem g (mem_image_of_mem f a₁Un), have aβ‚‚ ∈ U (n + 1), from `g (f a₁) = aβ‚‚` β–Έ this, have aβ‚‚ ∈ Union U, from exists.intro _ this, show false, from `aβ‚‚ βˆ‰ Union U` `aβ‚‚ ∈ Union U`) lemma h_inj : inj_on h A := take a₁ aβ‚‚, suppose a₁ ∈ A, suppose aβ‚‚ ∈ A, assume heq : h a₁ = h aβ‚‚, show a₁ = aβ‚‚, from by_cases (assume a₁UU : a₁ ∈ Union U, have aβ‚‚UU : aβ‚‚ ∈ Union U, from aux a₁UU `aβ‚‚ ∈ A` heq, have f a₁ = f aβ‚‚, from calc f a₁ = h a₁ : dif_pos a₁UU ... = h aβ‚‚ : heq ... = f aβ‚‚ : dif_pos aβ‚‚UU, show a₁ = aβ‚‚, from finj `a₁ ∈ A` `aβ‚‚ ∈ A` this) (assume a₁nUU : a₁ βˆ‰ Union U, have aβ‚‚nUU : aβ‚‚ βˆ‰ Union U, from assume H, a₁nUU (aux H `a₁ ∈ A` heq⁻¹), have eq₁ : g (ginv a₁) = a₁, from g_ginv_eq `a₁ ∈ A` a₁nUU, have eqβ‚‚ : g (ginv aβ‚‚) = aβ‚‚, from g_ginv_eq `aβ‚‚ ∈ A` aβ‚‚nUU, have ginv a₁ = ginv aβ‚‚, from calc ginv a₁ = h a₁ : dif_neg a₁nUU ... = h aβ‚‚ : heq ... = ginv aβ‚‚ : dif_neg aβ‚‚nUU, show a₁ = aβ‚‚, from calc a₁ = g (ginv a₁) : eq₁ -- g_ginv_eq `a₁ ∈ A` a₁nUU ... = g (ginv aβ‚‚) : this ... = aβ‚‚ : eqβ‚‚) -- g_ginv_eq `aβ‚‚ ∈ A` aβ‚‚nUU) /- h is surjective -/ lemma h_surj : surj_on h A B := take b, suppose b ∈ B, have g b ∈ A, from g_maps_to this, by_cases (suppose g b ∈ Union U, obtain n (gbUn : g b ∈ U n), from this, using ginj f_maps_to, begin cases n with n, {have g b ∈ U 0, from gbUn, have g b βˆ‰ g ' B, from and.right this, have g b ∈ g ' B, from mem_image_of_mem g `b ∈ B`, show b ∈ h ' A, from absurd `g b ∈ g ' B` `g b βˆ‰ g ' B`}, {have g b ∈ U (succ n), from gbUn, have g b ∈ g ' (f ' (U n)), from this, obtain b' [(b'fUn : b' ∈ f ' (U n)) (geq : g b' = g b)], from this, obtain a [(aUn : a ∈ U n) (faeq : f a = b')], from b'fUn, have g (f a) = g b, by rewrite [faeq, geq], have a ∈ A, from U_subset_A n aUn, have f a ∈ B, from f_maps_to this, have f a = b, from ginj `f a ∈ B` `b ∈ B` `g (f a) = g b`, have a ∈ Union U, from exists.intro n aUn, have h a = f a, from dif_pos this, show b ∈ h ' A, from mem_image `a ∈ A` (`h a = f a` ⬝ `f a = b`)} end) (suppose g b βˆ‰ Union U, have eq₁ : h (g b) = ginv (g b), from dif_neg this, have eqβ‚‚ : ginv (g b) = b, from ginv_g_eq `b ∈ B`, show b ∈ h ' A, from mem_image `g b ∈ A` (eq₁ ⬝ eqβ‚‚)) end end schroeder_bernstein namespace set section parameters {X Y : Type} parameter {A : set X} parameter {B : set Y} parameter {f : X β†’ Y} parameter (f_maps_to : maps_to f A B) parameter (finj : inj_on f A) parameter {g : Y β†’ X} parameter (g_maps_to : maps_to g B A) parameter (ginj : inj_on g B) theorem schroeder_bernstein : βˆƒ h, bij_on h A B := by_cases (assume H : βˆ€ b, b βˆ‰ B, have fsurj : surj_on f A B, from take b, suppose b ∈ B, absurd this !H, exists.intro f (and.intro f_maps_to (and.intro finj fsurj))) (assume H : Β¬ βˆ€ b, b βˆ‰ B, have βˆƒ b, b ∈ B, from exists_of_not_forall_not H, obtain b bB, from this, let h := @schroeder_bernstein.h X Y A B f g b in have h_maps_to : maps_to h A B, from schroeder_bernstein.h_maps_to f_maps_to bB, have hinj : inj_on h A, from schroeder_bernstein.h_inj finj ginj, -- ginj, have hsurj : surj_on h A B, from schroeder_bernstein.h_surj f_maps_to g_maps_to ginj, exists.intro h (and.intro h_maps_to (and.intro hinj hsurj))) end end set