/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.nat.sqrt Authors: Leonardo de Moura Very simple (sqrt n) function that returns s s.t. s*s ≤ n ≤ s*s + s + s -/ import data.nat.order data.nat.sub namespace nat open decidable -- This is the simplest possible function that just performs a linear search definition sqrt_aux : nat → nat → nat | 0 n := 0 | (succ s) n := if (succ s)*(succ s) ≤ n then succ s else sqrt_aux s n theorem sqrt_aux_succ_of_pos {s n} : (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = (succ s) := assume h, if_pos h theorem sqrt_aux_succ_of_neg {s n} : ¬ (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = sqrt_aux s n := assume h, if_neg h theorem sqrt_aux_of_le : ∀ {s n : nat}, s * s ≤ n → sqrt_aux s n = s | 0 n h := rfl | (succ s) n h := by rewrite [sqrt_aux_succ_of_pos h] definition sqrt (n : nat) : nat := sqrt_aux n n theorem sqrt_aux_lower : ∀ {s n : nat}, s ≤ n → sqrt_aux s n * sqrt_aux s n ≤ n | 0 n h := h | (succ s) n h := by_cases (λ h₁ : (succ s)*(succ s) ≤ n, by rewrite [sqrt_aux_succ_of_pos h₁]; exact h₁) (λ h₂ : ¬ (succ s)*(succ s) ≤ n, assert aux : s ≤ n, from lt.step (lt_of_succ_le h), by rewrite [sqrt_aux_succ_of_neg h₂]; exact (sqrt_aux_lower aux)) theorem sqrt_lower (n : nat) : sqrt n * sqrt n ≤ n := sqrt_aux_lower (le.refl n) theorem sqrt_aux_upper : ∀ {s n : nat}, n ≤ s*s + s + s → n ≤ sqrt_aux s n * sqrt_aux s n + sqrt_aux s n + sqrt_aux s n | 0 n h := h | (succ s) n h := by_cases (λ h₁ : (succ s)*(succ s) ≤ n, by rewrite [sqrt_aux_succ_of_pos h₁]; exact h) (λ h₂ : ¬ (succ s)*(succ s) ≤ n, assert h₃ : n < (succ s) * (succ s), from lt_of_not_le h₂, assert h₄ : n ≤ s * s + s + s, by rewrite [succ_mul_succ_eq at h₃]; exact h₃, by rewrite [sqrt_aux_succ_of_neg h₂]; exact (sqrt_aux_upper h₄)) theorem sqrt_upper (n : nat) : n ≤ sqrt n * sqrt n + sqrt n + sqrt n := have aux : n ≤ n*n + n + n, from le_add_of_le_right (le_add_of_le_left (le.refl n)), sqrt_aux_upper aux theorem sqrt_aux_eq : ∀ {s n}, s ≥ n → sqrt_aux s (n*n) = n | 0 n h := assert neqz : n = 0, from eq_zero_of_le_zero h, by rewrite neqz | (succ s) n h := by_cases (λ h₁ : (succ s)*(succ s) ≤ n*n, assert h₂ : (succ s)*(succ s) ≥ n*n, from mul_le_mul h h, assert h₃ : (succ s)*(succ s) = n*n, from le.antisymm h₁ h₂, assert h₄ : ¬ succ s > n, from assume ssgtn : succ s > n, assert h₅ : (succ s)*(succ s) > n*n, from mul_lt_mul_of_le_of_le ssgtn ssgtn, have h₆ : n*n > n*n, by rewrite [h₃ at h₅]; exact h₅, absurd h₆ !lt.irrefl, have sslen : succ s ≤ n, from le_of_not_lt h₄, assert sseqn : succ s = n, from le.antisymm sslen h, by rewrite [sqrt_aux_succ_of_pos h₁]; exact sseqn) (λ h₂ : ¬ (succ s)*(succ s) ≤ n*n, or.elim (eq_or_lt_of_le h) (λ sseqn, by rewrite [sseqn at h₂]; exact (absurd !le.refl h₂)) (λ sgen : s ≥ n, by rewrite [sqrt_aux_succ_of_neg h₂]; exact (sqrt_aux_eq sgen))) private theorem le_squared : ∀ (n : nat), n ≤ n*n | 0 := !le.refl | (succ n) := have aux₁ : 1 ≤ succ n, from succ_le_succ !zero_le, assert aux₂ : 1 * succ n ≤ succ n * succ n, from mul_le_mul aux₁ !le.refl, by rewrite [one_mul at aux₂]; exact aux₂ theorem sqrt_eq (n : nat) : sqrt (n*n) = n := sqrt_aux_eq !le_squared theorem mul_square_cancel {a b : nat} : a*a = b*b → a = b := assume h, assert aux : sqrt (a*a) = sqrt (b*b), by rewrite h, by rewrite [*sqrt_eq at aux]; exact aux end nat