Import macros. Theorem simple (p q r : Bool) : (p ⇒ q) ∧ (q ⇒ r) ⇒ p ⇒ r := Assume H_pq_qr H_p, let P_pq := Conjunct1 H_pq_qr, P_qr := Conjunct2 H_pq_qr, P_q := MP P_pq H_p in MP P_qr P_q. SetOption pp::implicit true. Show Environment 1. Theorem simple2 (a b c : Bool) : (a ⇒ b ⇒ c) ⇒ (a ⇒ b) ⇒ a ⇒ c := Assume H_abc H_ab H_a, let P_b := (MP H_ab H_a), P_bc := (MP H_abc H_a) in MP P_bc P_b. Show Environment 1.