open eq.ops inductive Nat : Type := zero : Nat, succ : Nat → Nat namespace Nat definition pred (n : Nat) := Nat.rec zero (fun m x, m) n theorem pred_succ (n : Nat) : pred (succ n) = n := rfl theorem succ_inj {n m : Nat} (H : succ n = succ m) : n = m := calc n = pred (succ n) : pred_succ n⁻¹ ... = pred (succ m) : {H} ... = m : pred_succ m end Nat