open nat definition foo : nat → nat, foo (0 + x) := x definition foo : nat → nat → nat, foo 0 _ := 0, foo x ⌞y⌟ := x definition foo : nat → nat → nat, foo 0 _ := 0, foo ⌞x⌟ x := x inductive tree (A : Type) := node : tree_list A → tree A, leaf : A → tree A with tree_list := nil {} : tree_list A, cons : tree A → tree_list A → tree_list A definition is_leaf {A : Type} : tree A → bool with is_leaf_aux : tree_list A → bool, is_leaf (tree.node _) := bool.ff, is_leaf (tree.leaf _) := bool.tt, is_leaf_aux tree_list.nil := bool.ff, is_leaf_aux (tree_list.cons _ _) := bool.ff definition foo : nat → nat, foo 0 := 0, foo (x+1) := let y := x + 2 in y * y example : foo 5 = 36 := rfl definition boo : nat → nat, boo (x + 1) := boo (x + 2), boo 0 := 0