/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Terminal category -/ import .indiscrete open functor is_trunc unit eq namespace category definition terminal_precategory [constructor] : precategory unit := indiscrete_precategory unit definition Terminal_precategory [constructor] : Precategory := precategory.Mk terminal_precategory notation 1 := Terminal_precategory definition one_op : 1ᵒᵖ = 1 := idp definition terminal_functor [constructor] (C : Precategory) : C ⇒ 1 := functor.mk (λx, star) (λx y f, star) (λx, idp) (λx y z g f, idp) definition is_contr_functor_one [instance] (C : Precategory) : is_contr (C ⇒ 1) := is_contr.mk (terminal_functor C) begin intro F, fapply functor_eq, { intro x, apply @is_prop.elim unit}, { intro x y f, apply @is_prop.elim unit} end definition terminal_functor_op (C : Precategory) : (terminal_functor C)ᵒᵖᶠ = terminal_functor Cᵒᵖ := idp definition terminal_functor_comp {C D : Precategory} (F : C ⇒ D) : (terminal_functor D) ∘f F = terminal_functor C := idp definition point [constructor] (C : Precategory) (c : C) : 1 ⇒ C := functor.mk (λx, c) (λx y f, id) (λx, idp) (λx y z g f, !id_id⁻¹) -- we need id_id in the declaration of precategory to make this to hold definitionally definition point_op (C : Precategory) (c : C) : (point C c)ᵒᵖᶠ = point Cᵒᵖ c := idp definition point_comp {C D : Precategory} (F : C ⇒ D) (c : C) : F ∘f point C c = point D (F c) := idp end category