/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn, Jakob von Raumer -/ import .precategory types.sigma arity open eq category prod equiv is_equiv sigma sigma.ops is_trunc namespace iso structure split_mono [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) := {retraction_of : b ⟶ a} (retraction_comp : retraction_of ∘ f = id) structure split_epi [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) := {section_of : b ⟶ a} (comp_section : f ∘ section_of = id) structure is_iso [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) := (inverse : b ⟶ a) (left_inverse : inverse ∘ f = id) (right_inverse : f ∘ inverse = id) attribute is_iso.inverse [reducible] open split_mono split_epi is_iso abbreviation retraction_of [unfold 6] := @split_mono.retraction_of abbreviation retraction_comp [unfold 6] := @split_mono.retraction_comp abbreviation section_of [unfold 6] := @split_epi.section_of abbreviation comp_section [unfold 6] := @split_epi.comp_section abbreviation inverse [unfold 6] := @is_iso.inverse abbreviation left_inverse [unfold 6] := @is_iso.left_inverse abbreviation right_inverse [unfold 6] := @is_iso.right_inverse postfix ⁻¹ := inverse --a second notation for the inverse, which is not overloaded postfix [parsing_only] `⁻¹ʰ`:std.prec.max_plus := inverse -- input using \-1h variables {ob : Type} [C : precategory ob] variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a} include C definition split_mono_of_is_iso [constructor] [instance] [priority 300] (f : a ⟶ b) [H : is_iso f] : split_mono f := split_mono.mk !left_inverse definition split_epi_of_is_iso [constructor] [instance] [priority 300] (f : a ⟶ b) [H : is_iso f] : split_epi f := split_epi.mk !right_inverse definition is_iso_id [constructor] [instance] [priority 500] (a : ob) : is_iso (ID a) := is_iso.mk _ !id_id !id_id definition is_iso_inverse [constructor] [instance] [priority 200] (f : a ⟶ b) {H : is_iso f} : is_iso f⁻¹ := is_iso.mk _ !right_inverse !left_inverse theorem left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a} (Hl : g ∘ f = id) (Hr : f ∘ g' = id) : g = g' := by rewrite [-(id_right g), -Hr, assoc, Hl, id_left] theorem retraction_eq [H : split_mono f] (H2 : f ∘ h = id) : retraction_of f = h := left_inverse_eq_right_inverse !retraction_comp H2 theorem section_eq [H : split_epi f] (H2 : h ∘ f = id) : section_of f = h := (left_inverse_eq_right_inverse H2 !comp_section)⁻¹ theorem inverse_eq_right [H : is_iso f] (H2 : f ∘ h = id) : f⁻¹ = h := left_inverse_eq_right_inverse !left_inverse H2 theorem inverse_eq_left [H : is_iso f] (H2 : h ∘ f = id) : f⁻¹ = h := (left_inverse_eq_right_inverse H2 !right_inverse)⁻¹ theorem retraction_eq_section (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f] : retraction_of f = section_of f := retraction_eq !comp_section definition is_iso_of_split_epi_of_split_mono [constructor] (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f] : is_iso f := is_iso.mk _ ((retraction_eq_section f) ▸ (retraction_comp f)) (comp_section f) theorem inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H = @inverse _ _ _ _ f H' := @inverse_eq_left _ _ _ _ _ _ H !left_inverse theorem inverse_involutive (f : a ⟶ b) [H : is_iso f] [H : is_iso (f⁻¹)] : (f⁻¹)⁻¹ = f := inverse_eq_right !left_inverse theorem inverse_eq_inverse {f g : a ⟶ b} [H : is_iso f] [H : is_iso g] (p : f = g) : f⁻¹ = g⁻¹ := by cases p;apply inverse_unique theorem retraction_id (a : ob) : retraction_of (ID a) = id := retraction_eq !id_id theorem section_id (a : ob) : section_of (ID a) = id := section_eq !id_id theorem id_inverse (a : ob) [H : is_iso (ID a)] : (ID a)⁻¹ = id := inverse_eq_left !id_id definition split_mono_comp [constructor] [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b) [Hf : split_mono f] [Hg : split_mono g] : split_mono (g ∘ f) := split_mono.mk (show (retraction_of f ∘ retraction_of g) ∘ g ∘ f = id, by rewrite [-assoc, assoc _ g f, retraction_comp, id_left, retraction_comp]) definition split_epi_comp [constructor] [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b) [Hf : split_epi f] [Hg : split_epi g] : split_epi (g ∘ f) := split_epi.mk (show (g ∘ f) ∘ section_of f ∘ section_of g = id, by rewrite [-assoc, {f ∘ _}assoc, comp_section, id_left, comp_section]) definition is_iso_comp [constructor] [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b) [Hf : is_iso f] [Hg : is_iso g] : is_iso (g ∘ f) := !is_iso_of_split_epi_of_split_mono theorem is_prop_is_iso [instance] (f : hom a b) : is_prop (is_iso f) := begin apply is_prop.mk, intro H H', cases H with g li ri, cases H' with g' li' ri', fapply (apd0111 (@is_iso.mk ob C a b f)), apply left_inverse_eq_right_inverse, apply li, apply ri', apply is_prop.elimo, apply is_prop.elimo, end end iso open iso /- isomorphic objects -/ structure iso {ob : Type} [C : precategory ob] (a b : ob) := (to_hom : hom a b) (struct : is_iso to_hom) infix ` ≅ `:50 := iso notation c ` ≅[`:50 C:0 `] `:0 c':50 := @iso C _ c c' attribute iso.struct [instance] [priority 2000] namespace iso variables {ob : Type} [C : precategory ob] variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a} include C attribute to_hom [coercion] protected definition MK [constructor] (f : a ⟶ b) (g : b ⟶ a) (H1 : g ∘ f = id) (H2 : f ∘ g = id) := @(mk f) (is_iso.mk _ H1 H2) variable {C} definition to_inv [reducible] [unfold 5] (f : a ≅ b) : b ⟶ a := (to_hom f)⁻¹ definition to_left_inverse [unfold 5] (f : a ≅ b) : (to_hom f)⁻¹ ∘ (to_hom f) = id := left_inverse (to_hom f) definition to_right_inverse [unfold 5] (f : a ≅ b) : (to_hom f) ∘ (to_hom f)⁻¹ = id := right_inverse (to_hom f) variable [C] protected definition refl [constructor] (a : ob) : a ≅ a := mk (ID a) _ protected definition symm [constructor] ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a := mk (to_hom H)⁻¹ _ protected definition trans [constructor] ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c := mk (to_hom H2 ∘ to_hom H1) _ infixl ` ⬝i `:75 := iso.trans postfix [parsing_only] `⁻¹ⁱ`:(max + 1) := iso.symm definition change_hom [constructor] (H : a ≅ b) (f : a ⟶ b) (p : to_hom H = f) : a ≅ b := iso.MK f (to_inv H) (p ▸ to_left_inverse H) (p ▸ to_right_inverse H) definition change_inv [constructor] (H : a ≅ b) (g : b ⟶ a) (p : to_inv H = g) : a ≅ b := iso.MK (to_hom H) g (p ▸ to_left_inverse H) (p ▸ to_right_inverse H) definition iso_mk_eq {f f' : a ⟶ b} [H : is_iso f] [H' : is_iso f'] (p : f = f') : iso.mk f _ = iso.mk f' _ := apd011 iso.mk p !is_prop.elimo variable {C} definition iso_eq {f f' : a ≅ b} (p : to_hom f = to_hom f') : f = f' := by (cases f; cases f'; apply (iso_mk_eq p)) definition iso_pathover {X : Type} {x₁ x₂ : X} {p : x₁ = x₂} {a : X → ob} {b : X → ob} {f₁ : a x₁ ≅ b x₁} {f₂ : a x₂ ≅ b x₂} (q : to_hom f₁ =[p] to_hom f₂) : f₁ =[p] f₂ := begin cases f₁, cases f₂, esimp at q, induction q, apply pathover_idp_of_eq, exact ap (iso.mk _) !is_prop.elim end variable [C] -- The structure for isomorphism can be characterized up to equivalence by a sigma type. protected definition sigma_char ⦃a b : ob⦄ : (Σ (f : hom a b), is_iso f) ≃ (a ≅ b) := begin fapply (equiv.mk), {intro S, apply iso.mk, apply (S.2)}, {fapply adjointify, {intro p, cases p with f H, exact sigma.mk f H}, {intro p, cases p, apply idp}, {intro S, cases S, apply idp}}, end -- The type of isomorphisms between two objects is a set definition is_set_iso [instance] : is_set (a ≅ b) := begin apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv (!iso.sigma_char), end definition iso_of_eq [unfold 5] (p : a = b) : a ≅ b := eq.rec_on p (iso.refl a) definition hom_of_eq [reducible] [unfold 5] (p : a = b) : a ⟶ b := iso.to_hom (iso_of_eq p) definition inv_of_eq [reducible] [unfold 5] (p : a = b) : b ⟶ a := iso.to_inv (iso_of_eq p) definition iso_of_eq_inv (p : a = b) : iso_of_eq p⁻¹ = iso.symm (iso_of_eq p) := eq.rec_on p idp theorem hom_of_eq_inv (p : a = b) : hom_of_eq p⁻¹ = inv_of_eq p := eq.rec_on p idp theorem inv_of_eq_inv (p : a = b) : inv_of_eq p⁻¹ = hom_of_eq p := eq.rec_on p idp definition iso_of_eq_con (p : a = b) (q : b = c) : iso_of_eq (p ⬝ q) = iso.trans (iso_of_eq p) (iso_of_eq q) := eq.rec_on q (eq.rec_on p (iso_eq !id_id⁻¹)) definition transport_iso_of_eq (p : a = b) : p ▸ !iso.refl = iso_of_eq p := by cases p; reflexivity definition hom_pathover {X : Type} {x₁ x₂ : X} {p : x₁ = x₂} {a b : X → ob} {f₁ : a x₁ ⟶ b x₁} {f₂ : a x₂ ⟶ b x₂} (q : hom_of_eq (ap b p) ∘ f₁ = f₂ ∘ hom_of_eq (ap a p)) : f₁ =[p] f₂ := begin induction p, apply pathover_idp_of_eq, exact !id_left⁻¹ ⬝ q ⬝ !id_right end definition hom_pathover_constant_left {X : Type} {x₁ x₂ : X} {p : x₁ = x₂} {a : ob} {b : X → ob} {f₁ : a ⟶ b x₁} {f₂ : a ⟶ b x₂} (q : hom_of_eq (ap b p) ∘ f₁ = f₂) : f₁ =[p] f₂ := hom_pathover (q ⬝ !id_right⁻¹ ⬝ ap (λx, _ ∘ hom_of_eq x) !ap_constant⁻¹) definition hom_pathover_constant_right {X : Type} {x₁ x₂ : X} {p : x₁ = x₂} {a : X → ob} {b : ob} {f₁ : a x₁ ⟶ b} {f₂ : a x₂ ⟶ b} (q : f₁ = f₂ ∘ hom_of_eq (ap a p)) : f₁ =[p] f₂ := hom_pathover (ap (λx, hom_of_eq x ∘ _) !ap_constant ⬝ !id_left ⬝ q) definition hom_pathover_id_left {p : a = b} {c : ob → ob} {f₁ : a ⟶ c a} {f₂ : b ⟶ c b} (q : hom_of_eq (ap c p) ∘ f₁ = f₂ ∘ hom_of_eq p) : f₁ =[p] f₂ := hom_pathover (q ⬝ ap (λx, _ ∘ hom_of_eq x) !ap_id⁻¹) definition hom_pathover_id_right {p : a = b} {c : ob → ob} {f₁ : c a ⟶ a} {f₂ : c b ⟶ b} (q : hom_of_eq p ∘ f₁ = f₂ ∘ hom_of_eq (ap c p)) : f₁ =[p] f₂ := hom_pathover (ap (λx, hom_of_eq x ∘ _) !ap_id ⬝ q) definition hom_pathover_id_left_id_right {p : a = b} {f₁ : a ⟶ a} {f₂ : b ⟶ b} (q : hom_of_eq p ∘ f₁ = f₂ ∘ hom_of_eq p) : f₁ =[p] f₂ := hom_pathover_id_left (ap (λx, hom_of_eq x ∘ _) !ap_id ⬝ q) definition hom_pathover_id_left_constant_right {p : a = b} {f₁ : a ⟶ c} {f₂ : b ⟶ c} (q : f₁ = f₂ ∘ hom_of_eq p) : f₁ =[p] f₂ := hom_pathover_constant_right (q ⬝ ap (λx, _ ∘ hom_of_eq x) !ap_id⁻¹) definition hom_pathover_constant_left_id_right {p : a = b} {f₁ : c ⟶ a} {f₂ : c ⟶ b} (q : hom_of_eq p ∘ f₁ = f₂) : f₁ =[p] f₂ := hom_pathover_constant_left (ap (λx, hom_of_eq x ∘ _) !ap_id ⬝ q) section open funext variables {X : Type} {x y : X} {F G : X → ob} definition transport_hom_of_eq (p : F = G) (f : hom (F x) (F y)) : p ▸ f = hom_of_eq (apd10 p y) ∘ f ∘ inv_of_eq (apd10 p x) := by induction p; exact !id_leftright⁻¹ definition transport_hom_of_eq_right (p : x = y) (f : hom c (F x)) : p ▸ f = hom_of_eq (ap F p) ∘ f := by induction p; exact !id_left⁻¹ definition transport_hom_of_eq_left (p : x = y) (f : hom (F x) c) : p ▸ f = f ∘ inv_of_eq (ap F p) := by induction p; exact !id_right⁻¹ definition transport_hom (p : F ~ G) (f : hom (F x) (F y)) : eq_of_homotopy p ▸ f = hom_of_eq (p y) ∘ f ∘ inv_of_eq (p x) := calc eq_of_homotopy p ▸ f = hom_of_eq (apd10 (eq_of_homotopy p) y) ∘ f ∘ inv_of_eq (apd10 (eq_of_homotopy p) x) : transport_hom_of_eq ... = hom_of_eq (p y) ∘ f ∘ inv_of_eq (p x) : {right_inv apd10 p} end structure mono [class] (f : a ⟶ b) := (elim : ∀c (g h : hom c a), f ∘ g = f ∘ h → g = h) structure epi [class] (f : a ⟶ b) := (elim : ∀c (g h : hom b c), g ∘ f = h ∘ f → g = h) definition mono_of_split_mono [instance] (f : a ⟶ b) [H : split_mono f] : mono f := mono.mk (λ c g h H, calc g = id ∘ g : by rewrite id_left ... = (retraction_of f ∘ f) ∘ g : by rewrite retraction_comp ... = (retraction_of f ∘ f) ∘ h : by rewrite [-assoc, H, -assoc] ... = id ∘ h : by rewrite retraction_comp ... = h : by rewrite id_left) definition epi_of_split_epi [instance] (f : a ⟶ b) [H : split_epi f] : epi f := epi.mk (λ c g h H, calc g = g ∘ id : by rewrite id_right ... = g ∘ f ∘ section_of f : by rewrite -(comp_section f) ... = h ∘ f ∘ section_of f : by rewrite [assoc, H, -assoc] ... = h ∘ id : by rewrite comp_section ... = h : by rewrite id_right) definition mono_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : mono f] [Hg : mono g] : mono (g ∘ f) := mono.mk (λ d h₁ h₂ H, have H2 : g ∘ (f ∘ h₁) = g ∘ (f ∘ h₂), begin rewrite *assoc, exact H end, !mono.elim (!mono.elim H2)) definition epi_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : epi f] [Hg : epi g] : epi (g ∘ f) := epi.mk (λ d h₁ h₂ H, have H2 : (h₁ ∘ g) ∘ f = (h₂ ∘ g) ∘ f, begin rewrite -*assoc, exact H end, !epi.elim (!epi.elim H2)) end iso attribute iso.refl [refl] attribute iso.symm [symm] attribute iso.trans [trans] namespace iso /- rewrite lemmas for inverses, modified from https://github.com/JasonGross/HoTT-categories/blob/master/theories/Categories/Category/Morphisms.v -/ section variables {ob : Type} [C : precategory ob] include C variables {a b c d : ob} (f : b ⟶ a) (r : c ⟶ d) (q : b ⟶ c) (p : a ⟶ b) (g : d ⟶ c) variable [Hq : is_iso q] include Hq theorem comp.right_inverse : q ∘ q⁻¹ = id := !right_inverse theorem comp.left_inverse : q⁻¹ ∘ q = id := !left_inverse theorem inverse_comp_cancel_left : q⁻¹ ∘ (q ∘ p) = p := by rewrite [assoc, left_inverse, id_left] theorem comp_inverse_cancel_left : q ∘ (q⁻¹ ∘ g) = g := by rewrite [assoc, right_inverse, id_left] theorem comp_inverse_cancel_right : (r ∘ q) ∘ q⁻¹ = r := by rewrite [-assoc, right_inverse, id_right] theorem inverse_comp_cancel_right : (f ∘ q⁻¹) ∘ q = f := by rewrite [-assoc, left_inverse, id_right] theorem comp_inverse [Hp : is_iso p] [Hpq : is_iso (q ∘ p)] : (q ∘ p)⁻¹ʰ = p⁻¹ʰ ∘ q⁻¹ʰ := inverse_eq_left (show (p⁻¹ʰ ∘ q⁻¹ʰ) ∘ q ∘ p = id, from by rewrite [-assoc, inverse_comp_cancel_left, left_inverse]) theorem inverse_comp_inverse_left [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ = g⁻¹ ∘ q := inverse_involutive q ▸ comp_inverse q⁻¹ g theorem inverse_comp_inverse_right [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ = f ∘ q⁻¹ := inverse_involutive f ▸ comp_inverse q f⁻¹ theorem inverse_comp_inverse_inverse [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ = r ∘ q := inverse_involutive r ▸ inverse_comp_inverse_left q r⁻¹ end section variables {ob : Type} {C : precategory ob} include C variables {d c b a : ob} {r' : c ⟶ d} {i : b ⟶ c} {f : b ⟶ a} {r : c ⟶ d} {q : b ⟶ c} {p : a ⟶ b} {g : d ⟶ c} {h : c ⟶ b} {p' : a ⟶ b} {x : b ⟶ d} {z : a ⟶ c} {y : d ⟶ b} {w : c ⟶ a} variable [Hq : is_iso q] include Hq theorem comp_eq_of_eq_inverse_comp (H : y = q⁻¹ ∘ g) : q ∘ y = g := H⁻¹ ▸ comp_inverse_cancel_left q g theorem comp_eq_of_eq_comp_inverse (H : w = f ∘ q⁻¹) : w ∘ q = f := H⁻¹ ▸ inverse_comp_cancel_right f q theorem eq_comp_of_inverse_comp_eq (H : q⁻¹ ∘ g = y) : g = q ∘ y := (comp_eq_of_eq_inverse_comp H⁻¹)⁻¹ theorem eq_comp_of_comp_inverse_eq (H : f ∘ q⁻¹ = w) : f = w ∘ q := (comp_eq_of_eq_comp_inverse H⁻¹)⁻¹ variable {Hq} theorem inverse_comp_eq_of_eq_comp (H : z = q ∘ p) : q⁻¹ ∘ z = p := H⁻¹ ▸ inverse_comp_cancel_left q p theorem comp_inverse_eq_of_eq_comp (H : x = r ∘ q) : x ∘ q⁻¹ = r := H⁻¹ ▸ comp_inverse_cancel_right r q theorem eq_inverse_comp_of_comp_eq (H : q ∘ p = z) : p = q⁻¹ ∘ z := (inverse_comp_eq_of_eq_comp H⁻¹)⁻¹ theorem eq_comp_inverse_of_comp_eq (H : r ∘ q = x) : r = x ∘ q⁻¹ := (comp_inverse_eq_of_eq_comp H⁻¹)⁻¹ theorem eq_inverse_of_comp_eq_id' (H : h ∘ q = id) : h = q⁻¹ := (inverse_eq_left H)⁻¹ theorem eq_inverse_of_comp_eq_id (H : q ∘ h = id) : h = q⁻¹ := (inverse_eq_right H)⁻¹ theorem inverse_eq_of_id_eq_comp (H : id = h ∘ q) : q⁻¹ = h := (eq_inverse_of_comp_eq_id' H⁻¹)⁻¹ theorem inverse_eq_of_id_eq_comp' (H : id = q ∘ h) : q⁻¹ = h := (eq_inverse_of_comp_eq_id H⁻¹)⁻¹ variable [Hq] theorem eq_of_comp_inverse_eq_id (H : i ∘ q⁻¹ = id) : i = q := eq_inverse_of_comp_eq_id' H ⬝ inverse_involutive q theorem eq_of_inverse_comp_eq_id (H : q⁻¹ ∘ i = id) : i = q := eq_inverse_of_comp_eq_id H ⬝ inverse_involutive q theorem eq_of_id_eq_comp_inverse (H : id = i ∘ q⁻¹) : q = i := (eq_of_comp_inverse_eq_id H⁻¹)⁻¹ theorem eq_of_id_eq_inverse_comp (H : id = q⁻¹ ∘ i) : q = i := (eq_of_inverse_comp_eq_id H⁻¹)⁻¹ theorem inverse_comp_id_comp : q⁻¹ ∘ id ∘ q = id := ap (λ x, _ ∘ x) !id_left ⬝ !comp.left_inverse theorem comp_id_comp_inverse : q ∘ id ∘ q⁻¹ = id := ap (λ x, _ ∘ x) !id_left ⬝ !comp.right_inverse variables (q) theorem comp.cancel_left (H : q ∘ p = q ∘ p') : p = p' := by rewrite [-inverse_comp_cancel_left q p, H, inverse_comp_cancel_left q] theorem comp.cancel_right (H : r ∘ q = r' ∘ q) : r = r' := by rewrite [-comp_inverse_cancel_right r q, H, comp_inverse_cancel_right _ q] end end iso namespace iso /- precomposition and postcomposition by an iso is an equivalence -/ definition is_equiv_postcompose [constructor] {ob : Type} [precategory ob] {a b c : ob} (g : b ⟶ c) [is_iso g] : is_equiv (λ(f : a ⟶ b), g ∘ f) := begin fapply adjointify, { exact λf', g⁻¹ ∘ f'}, { intro f', apply comp_inverse_cancel_left}, { intro f, apply inverse_comp_cancel_left} end definition equiv_postcompose [constructor] {ob : Type} [precategory ob] {a b c : ob} (g : b ⟶ c) [is_iso g] : (a ⟶ b) ≃ (a ⟶ c) := equiv.mk (λ(f : a ⟶ b), g ∘ f) (is_equiv_postcompose g) definition is_equiv_precompose [constructor] {ob : Type} [precategory ob] {a b c : ob} (f : a ⟶ b) [is_iso f] : is_equiv (λ(g : b ⟶ c), g ∘ f) := begin fapply adjointify, { exact λg', g' ∘ f⁻¹}, { intro g', apply comp_inverse_cancel_right}, { intro g, apply inverse_comp_cancel_right} end definition equiv_precompose [constructor] {ob : Type} [precategory ob] {a b c : ob} (f : a ⟶ b) [is_iso f] : (b ⟶ c) ≃ (a ⟶ c) := equiv.mk (λ(g : b ⟶ c), g ∘ f) (is_equiv_precompose f) end iso