variable A.{l1 l2} : Type.{l1} → Type.{l2} check A definition tst.{l} (A : Type) (B : Type) (C : Type.{l}) : Type := A → B → C check tst variable group.{l} : Type.{l+1} variable carrier.{l} : group.{l} → Type.{l} definition to_carrier (g : group) := carrier g check to_carrier.{1} section parameter A : Type check A definition B := A → A end variable N : Type.{1} check B N variable f : B N check f variable a : N check f a section parameter T1 : Type parameter T2 : Type parameter f : T1 → T2 → T2 definition double (a : T1) (b : T2) := f a (f a b) end check double check double.{1 2} definition Prop := Type.{0} variable eq : Π {A : Type}, A → A → Prop infix `=`:50 := eq check eq.{1} section universe l universe u parameter {T1 : Type.{l}} parameter {T2 : Type.{l}} parameter {T3 : Type.{u}} parameter f : T1 → T2 → T2 definition is_proj2 := ∀ x y, f x y = y definition is_proj3 (f : T1 → T2 → T3 → T3) := ∀ x y z, f x y z = z end check @is_proj2.{1} check @is_proj3.{1 2} namespace foo section parameters {T1 T2 : Type} parameter {T3 : Type} parameter f : T1 → T2 → T2 definition is_proj2 := ∀ x y, f x y = y definition is_proj3 (f : T1 → T2 → T3 → T3) := ∀ x y z, f x y z = z end check @foo.is_proj2.{1} check @foo.is_proj3.{1 2} end foo namespace bla section parameter {T1 : Type} parameter {T2 : Type} parameter {T3 : Type} parameter f : T1 → T2 → T2 definition is_proj2 := ∀ x y, f x y = y definition is_proj3 (f : T1 → T2 → T3 → T3) := ∀ x y z, f x y z = z end check @bla.is_proj2.{1 2} check @bla.is_proj3.{1 2 3} end bla