/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Chain complexes. We define chain complexes in a general way as a sequence X of types indexes over an arbitrary type N with a successor S. There are maps X (S n) → X n for n : N. We can vary N to have chain complexes indexed by ℕ, ℤ, a finite type or something else, and for both ℕ and ℤ we can choose the maps to go up or down. We also use the indexing ℕ × 3 for the LES of homotopy groups, because then it computes better (see [LES_of_homotopy_groups]). We have two separate notions of chain complexes: - type_chain_complex: sequence of types, where exactness is formulated using pure existence. - chain_complex: sequence of sets, where exactness is formulated using mere existence. -/ import types.int algebra.group_theory types.fin open eq pointed int unit is_equiv equiv is_trunc trunc function algebra group sigma.ops sum prod nat bool fin structure succ_str : Type := (carrier : Type) (succ : carrier → carrier) attribute succ_str.carrier [coercion] definition succ_str.S {X : succ_str} : X → X := succ_str.succ X open succ_str definition snat [reducible] [constructor] : succ_str := succ_str.mk ℕ nat.succ definition snat' [reducible] [constructor] : succ_str := succ_str.mk ℕ nat.pred definition sint [reducible] [constructor] : succ_str := succ_str.mk ℤ int.succ definition sint' [reducible] [constructor] : succ_str := succ_str.mk ℤ int.pred notation `+ℕ` := snat notation `-ℕ` := snat' notation `+ℤ` := sint notation `-ℤ` := sint' definition stratified_type [reducible] (N : succ_str) (n : ℕ) : Type₀ := N × fin (succ n) definition stratified_succ {N : succ_str} {n : ℕ} (x : stratified_type N n) : stratified_type N n := (if val (pr2 x) = n then S (pr1 x) else pr1 x, cyclic_succ (pr2 x)) definition stratified [reducible] [constructor] (N : succ_str) (n : ℕ) : succ_str := succ_str.mk (stratified_type N n) stratified_succ notation `+3ℕ` := stratified +ℕ 2 notation `-3ℕ` := stratified -ℕ 2 notation `+3ℤ` := stratified +ℤ 2 notation `-3ℤ` := stratified -ℤ 2 notation `+6ℕ` := stratified +ℕ 5 notation `-6ℕ` := stratified -ℕ 5 notation `+6ℤ` := stratified +ℤ 5 notation `-6ℤ` := stratified -ℤ 5 namespace chain_complex /- We define "type chain complexes" which are chain complexes without the "set"-requirement. Exactness is formulated without propositional truncation. -/ structure type_chain_complex (N : succ_str) : Type := (car : N → Type*) (fn : Π(n : N), car (S n) →* car n) (is_chain_complex : Π(n : N) (x : car (S (S n))), fn n (fn (S n) x) = pt) section variables {N : succ_str} (X : type_chain_complex N) (n : N) definition tcc_to_car [unfold 2] [coercion] := @type_chain_complex.car definition tcc_to_fn [unfold 2] : X (S n) →* X n := type_chain_complex.fn X n definition tcc_is_chain_complex [unfold 2] : Π(x : X (S (S n))), tcc_to_fn X n (tcc_to_fn X (S n) x) = pt := type_chain_complex.is_chain_complex X n -- important: these notions are shifted by one! (this is to avoid transports) definition is_exact_at_t [reducible] /- X n -/ : Type := Π(x : X (S n)), tcc_to_fn X n x = pt → fiber (tcc_to_fn X (S n)) x definition is_exact_t [reducible] /- X -/ : Type := Π(n : N), is_exact_at_t X n -- A chain complex on +ℕ can be trivially extended to a chain complex on +ℤ definition type_chain_complex_from_left (X : type_chain_complex +ℕ) : type_chain_complex +ℤ := type_chain_complex.mk (int.rec X (λn, punit)) begin intro n, fconstructor, { induction n with n n, { exact tcc_to_fn X n}, { esimp, intro x, exact star}}, { induction n with n n, { apply respect_pt}, { reflexivity}} end begin intro n, induction n with n n, { exact tcc_is_chain_complex X n}, { esimp, intro x, reflexivity} end definition is_exact_t_from_left {X : type_chain_complex +ℕ} {n : ℕ} (H : is_exact_at_t X n) : is_exact_at_t (type_chain_complex_from_left X) (of_nat n) := H /- Given a natural isomorphism between a chain complex and any other sequence, we can give the other sequence the structure of a chain complex, which is exact at the positions where the original sequence is. -/ definition transfer_type_chain_complex [constructor] /- X -/ {Y : N → Type*} (g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n) (p : Π{n} (x : X (S n)), e (tcc_to_fn X n x) = g (e x)) : type_chain_complex N := type_chain_complex.mk Y @g abstract begin intro n, apply equiv_rect (equiv_of_pequiv e), intro x, refine ap g (p x)⁻¹ ⬝ _, refine (p _)⁻¹ ⬝ _, refine ap e (tcc_is_chain_complex X n _) ⬝ _, apply respect_pt end end theorem is_exact_at_t_transfer {X : type_chain_complex N} {Y : N → Type*} {g : Π{n : N}, Y (S n) →* Y n} (e : Π{n}, X n ≃* Y n) (p : Π{n} (x : X (S n)), e (tcc_to_fn X n x) = g (e x)) {n : N} (H : is_exact_at_t X n) : is_exact_at_t (transfer_type_chain_complex X @g @e @p) n := begin intro y q, esimp at *, have H2 : tcc_to_fn X n (e⁻¹ᵉ* y) = pt, begin refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _, refine ap _ q ⬝ _, exact respect_pt e⁻¹ᵉ* end, cases (H _ H2) with x r, refine fiber.mk (e x) _, refine (p x)⁻¹ ⬝ _, refine ap e r ⬝ _, apply right_inv end /- We want a theorem which states that if we have a chain complex, but with some where the maps are composed by an equivalences, we want to remove this equivalence. The following two theorems give sufficient conditions for when this is allowed. We use this to transform the LES of homotopy groups where on the odd levels we have maps -πₙ(...) into the LES of homotopy groups where we remove the minus signs (which represents composition with path inversion). -/ definition type_chain_complex_cancel_aut [constructor] /- X -/ (g : Π{n : N}, X (S n) →* X n) (e : Π{n}, X n ≃* X n) (r : Π{n}, X n →* X n) (p : Π{n : N} (x : X (S n)), g (e x) = tcc_to_fn X n x) (pr : Π{n : N} (x : X (S n)), g x = r (g (e x))) : type_chain_complex N := type_chain_complex.mk X @g abstract begin have p' : Π{n : N} (x : X (S n)), g x = tcc_to_fn X n (e⁻¹ x), from λn, homotopy_inv_of_homotopy_pre e _ _ p, intro n x, refine ap g !p' ⬝ !pr ⬝ _, refine ap r !p ⬝ _, refine ap r (tcc_is_chain_complex X n _) ⬝ _, apply respect_pt end end theorem is_exact_at_t_cancel_aut {X : type_chain_complex N} {g : Π{n : N}, X (S n) →* X n} {e : Π{n}, X n ≃* X n} {r : Π{n}, X n →* X n} (l : Π{n}, X n →* X n) (p : Π{n : N} (x : X (S n)), g (e x) = tcc_to_fn X n x) (pr : Π{n : N} (x : X (S n)), g x = r (g (e x))) (pl : Π{n : N} (x : X (S n)), g (l x) = e (g x)) (H : is_exact_at_t X n) : is_exact_at_t (type_chain_complex_cancel_aut X @g @e @r @p @pr) n := begin intro y q, esimp at *, have H2 : tcc_to_fn X n (e⁻¹ y) = pt, from (homotopy_inv_of_homotopy_pre e _ _ p _)⁻¹ ⬝ q, cases (H _ H2) with x s, refine fiber.mk (l (e x)) _, refine !pl ⬝ _, refine ap e (!p ⬝ s) ⬝ _, apply right_inv end /- A more general transfer theorem. Here the base type can also change by an equivalence. -/ definition transfer_type_chain_complex2 [constructor] {M : succ_str} {Y : M → Type*} (f : M ≃ N) (c : Π(m : M), S (f m) = f (S m)) (g : Π{m : M}, Y (S m) →* Y m) (e : Π{m}, X (f m) ≃* Y m) (p : Π{m} (x : X (S (f m))), e (tcc_to_fn X (f m) x) = g (e (cast (ap (λx, X x) (c m)) x))) : type_chain_complex M := type_chain_complex.mk Y @g begin intro m, apply equiv_rect (equiv_of_pequiv e), apply equiv_rect (equiv_of_eq (ap (λx, X x) (c (S m)))), esimp, apply equiv_rect (equiv_of_eq (ap (λx, X (S x)) (c m))), esimp, intro x, refine ap g (p _)⁻¹ ⬝ _, refine ap g (ap e (fn_cast_eq_cast_fn (c m) (tcc_to_fn X) x)) ⬝ _, refine (p _)⁻¹ ⬝ _, refine ap e (tcc_is_chain_complex X (f m) _) ⬝ _, apply respect_pt end definition is_exact_at_t_transfer2 {X : type_chain_complex N} {M : succ_str} {Y : M → Type*} (f : M ≃ N) (c : Π(m : M), S (f m) = f (S m)) (g : Π{m : M}, Y (S m) →* Y m) (e : Π{m}, X (f m) ≃* Y m) (p : Π{m} (x : X (S (f m))), e (tcc_to_fn X (f m) x) = g (e (cast (ap (λx, X x) (c m)) x))) {m : M} (H : is_exact_at_t X (f m)) : is_exact_at_t (transfer_type_chain_complex2 X f c @g @e @p) m := begin intro y q, esimp at *, have H2 : tcc_to_fn X (f m) ((equiv_of_eq (ap (λx, X x) (c m)))⁻¹ᵉ (e⁻¹ y)) = pt, begin refine _ ⬝ ap e⁻¹ᵉ* q ⬝ (respect_pt (e⁻¹ᵉ*)), apply eq_inv_of_eq, clear q, revert y, apply inv_homotopy_of_homotopy_pre e, apply inv_homotopy_of_homotopy_pre, apply p end, induction (H _ H2) with x r, refine fiber.mk (e (cast (ap (λx, X x) (c (S m))) (cast (ap (λx, X (S x)) (c m)) x))) _, refine (p _)⁻¹ ⬝ _, refine ap e (fn_cast_eq_cast_fn (c m) (tcc_to_fn X) x) ⬝ _, refine ap (λx, e (cast _ x)) r ⬝ _, esimp [equiv.symm], rewrite [-ap_inv], refine ap e !cast_cast_inv ⬝ _, apply right_inv end end /- actual (set) chain complexes -/ structure chain_complex (N : succ_str) : Type := (car : N → Set*) (fn : Π(n : N), car (S n) →* car n) (is_chain_complex : Π(n : N) (x : car (S (S n))), fn n (fn (S n) x) = pt) section variables {N : succ_str} (X : chain_complex N) (n : N) definition cc_to_car [unfold 2] [coercion] := @chain_complex.car definition cc_to_fn [unfold 2] : X (S n) →* X n := @chain_complex.fn N X n definition cc_is_chain_complex [unfold 2] : Π(x : X (S (S n))), cc_to_fn X n (cc_to_fn X (S n) x) = pt := @chain_complex.is_chain_complex N X n -- important: these notions are shifted by one! (this is to avoid transports) definition is_exact_at [reducible] /- X n -/ : Type := Π(x : X (S n)), cc_to_fn X n x = pt → image (cc_to_fn X (S n)) x definition is_exact [reducible] /- X -/ : Type := Π(n : N), is_exact_at X n definition chain_complex_from_left (X : chain_complex +ℕ) : chain_complex +ℤ := chain_complex.mk (int.rec X (λn, punit)) begin intro n, fconstructor, { induction n with n n, { exact cc_to_fn X n}, { esimp, intro x, exact star}}, { induction n with n n, { apply respect_pt}, { reflexivity}} end begin intro n, induction n with n n, { exact cc_is_chain_complex X n}, { esimp, intro x, reflexivity} end definition is_exact_from_left {X : chain_complex +ℕ} {n : ℕ} (H : is_exact_at X n) : is_exact_at (chain_complex_from_left X) (of_nat n) := H definition transfer_chain_complex [constructor] {Y : N → Set*} (g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n) (p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (e x)) : chain_complex N := chain_complex.mk Y @g abstract begin intro n, apply equiv_rect (equiv_of_pequiv e), intro x, refine ap g (p x)⁻¹ ⬝ _, refine (p _)⁻¹ ⬝ _, refine ap e (cc_is_chain_complex X n _) ⬝ _, apply respect_pt end end theorem is_exact_at_transfer {X : chain_complex N} {Y : N → Set*} (g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n) (p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (e x)) {n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex X @g @e @p) n := begin intro y q, esimp at *, have H2 : cc_to_fn X n (e⁻¹ᵉ* y) = pt, begin refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _, refine ap _ q ⬝ _, exact respect_pt e⁻¹ᵉ* end, induction (H _ H2) with x r, refine image.mk (e x) _, refine (p x)⁻¹ ⬝ _, refine ap e r ⬝ _, apply right_inv end /- A type chain complex can be set-truncated to a chain complex -/ definition trunc_chain_complex [constructor] (X : type_chain_complex N) : chain_complex N := chain_complex.mk (λn, ptrunc 0 (X n)) (λn, ptrunc_functor 0 (tcc_to_fn X n)) begin intro n x, esimp at *, refine @trunc.rec _ _ _ (λH, !is_trunc_eq) _ x, clear x, intro x, esimp, exact ap tr (tcc_is_chain_complex X n x) end definition is_exact_at_trunc (X : type_chain_complex N) {n : N} (H : is_exact_at_t X n) : is_exact_at (trunc_chain_complex X) n := begin intro x p, esimp at *, induction x with x, esimp at *, note q := !tr_eq_tr_equiv p, induction q with q, induction H x q with y r, refine image.mk (tr y) _, esimp, exact ap tr r end definition transfer_chain_complex2 [constructor] {M : succ_str} {Y : M → Set*} (f : N ≃ M) (c : Π(n : N), f (S n) = S (f n)) (g : Π{m : M}, Y (S m) →* Y m) (e : Π{n}, X n ≃* Y (f n)) (p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (c n ▸ e x)) : chain_complex M := chain_complex.mk Y @g begin refine equiv_rect f _ _, intro n, have H : Π (x : Y (f (S (S n)))), g (c n ▸ g (c (S n) ▸ x)) = pt, begin apply equiv_rect (equiv_of_pequiv e), intro x, refine ap (λx, g (c n ▸ x)) (@p (S n) x)⁻¹ᵖ ⬝ _, refine (p _)⁻¹ ⬝ _, refine ap e (cc_is_chain_complex X n _) ⬝ _, apply respect_pt end, refine pi.pi_functor _ _ H, { intro x, exact (c (S n))⁻¹ ▸ (c n)⁻¹ ▸ x}, -- with implicit arguments, this is: -- transport (λx, Y x) (c (S n))⁻¹ (transport (λx, Y (S x)) (c n)⁻¹ x) { intro x, intro p, refine _ ⬝ p, rewrite [tr_inv_tr, fn_tr_eq_tr_fn (c n)⁻¹ @g, tr_inv_tr]} end definition is_exact_at_transfer2 {X : chain_complex N} {M : succ_str} {Y : M → Set*} (f : N ≃ M) (c : Π(n : N), f (S n) = S (f n)) (g : Π{m : M}, Y (S m) →* Y m) (e : Π{n}, X n ≃* Y (f n)) (p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (c n ▸ e x)) {n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex2 X f c @g @e @p) (f n) := begin intro y q, esimp at *, have H2 : cc_to_fn X n (e⁻¹ᵉ* ((c n)⁻¹ ▸ y)) = pt, begin refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _, rewrite [tr_inv_tr, q], exact respect_pt e⁻¹ᵉ* end, induction (H _ H2) with x r, refine image.mk (c n ▸ c (S n) ▸ e x) _, rewrite [fn_tr_eq_tr_fn (c n) @g], refine ap (λx, c n ▸ x) (p x)⁻¹ ⬝ _, refine ap (λx, c n ▸ e x) r ⬝ _, refine ap (λx, c n ▸ x) !right_inv ⬝ _, apply tr_inv_tr, end /- This is a start of a development of chain complexes consisting only on groups. This might be useful to have in stable algebraic topology, but in the unstable case it's less useful, since the smallest terms usually don't have a group structure. We don't use it yet, so it's commented out for now -/ -- structure group_chain_complex : Type := -- (car : N → Group) -- (fn : Π(n : N), car (S n) →g car n) -- (is_chain_complex : Π{n : N} (x : car ((S n) + 1)), fn n (fn (S n) x) = 1) -- structure group_chain_complex : Type := -- chain complex on the naturals with maps going down -- (car : N → Group) -- (fn : Π(n : N), car (S n) →g car n) -- (is_chain_complex : Π{n : N} (x : car ((S n) + 1)), fn n (fn (S n) x) = 1) -- structure right_group_chain_complex : Type := -- chain complex on the naturals with maps going up -- (car : N → Group) -- (fn : Π(n : N), car n →g car (S n)) -- (is_chain_complex : Π{n : N} (x : car n), fn (S n) (fn n x) = 1) -- definition gcc_to_car [unfold 1] [coercion] := @group_chain_complex.car -- definition gcc_to_fn [unfold 1] := @group_chain_complex.fn -- definition gcc_is_chain_complex [unfold 1] := @group_chain_complex.is_chain_complex -- definition lgcc_to_car [unfold 1] [coercion] := @left_group_chain_complex.car -- definition lgcc_to_fn [unfold 1] := @left_group_chain_complex.fn -- definition lgcc_is_chain_complex [unfold 1] := @left_group_chain_complex.is_chain_complex -- definition rgcc_to_car [unfold 1] [coercion] := @right_group_chain_complex.car -- definition rgcc_to_fn [unfold 1] := @right_group_chain_complex.fn -- definition rgcc_is_chain_complex [unfold 1] := @right_group_chain_complex.is_chain_complex -- -- important: these notions are shifted by one! (this is to avoid transports) -- definition is_exact_at_g [reducible] (X : group_chain_complex) (n : N) : Type := -- Π(x : X (S n)), gcc_to_fn X n x = 1 → image (gcc_to_fn X (S n)) x -- definition is_exact_at_lg [reducible] (X : left_group_chain_complex) (n : N) : Type := -- Π(x : X (S n)), lgcc_to_fn X n x = 1 → image (lgcc_to_fn X (S n)) x -- definition is_exact_at_rg [reducible] (X : right_group_chain_complex) (n : N) : Type := -- Π(x : X (S n)), rgcc_to_fn X (S n) x = 1 → image (rgcc_to_fn X n) x -- definition is_exact_g [reducible] (X : group_chain_complex) : Type := -- Π(n : N), is_exact_at_g X n -- definition is_exact_lg [reducible] (X : left_group_chain_complex) : Type := -- Π(n : N), is_exact_at_lg X n -- definition is_exact_rg [reducible] (X : right_group_chain_complex) : Type := -- Π(n : N), is_exact_at_rg X n -- definition group_chain_complex_from_left (X : left_group_chain_complex) : group_chain_complex := -- group_chain_complex.mk (int.rec X (λn, G0)) -- begin -- intro n, fconstructor, -- { induction n with n n, -- { exact @lgcc_to_fn X n}, -- { esimp, intro x, exact star}}, -- { induction n with n n, -- { apply respect_mul}, -- { intro g h, reflexivity}} -- end -- begin -- intro n, induction n with n n, -- { exact lgcc_is_chain_complex X}, -- { esimp, intro x, reflexivity} -- end -- definition is_exact_g_from_left {X : left_group_chain_complex} {n : N} (H : is_exact_at_lg X n) -- : is_exact_at_g (group_chain_complex_from_left X) n := -- H -- definition transfer_left_group_chain_complex [constructor] (X : left_group_chain_complex) -- {Y : N → Group} (g : Π{n : N}, Y (S n) →g Y n) (e : Π{n}, X n ≃* Y n) -- (p : Π{n} (x : X (S n)), e (lgcc_to_fn X n x) = g (e x)) : left_group_chain_complex := -- left_group_chain_complex.mk Y @g -- begin -- intro n, apply equiv_rect (pequiv_of_equiv e), intro x, -- refine ap g (p x)⁻¹ ⬝ _, -- refine (p _)⁻¹ ⬝ _, -- refine ap e (lgcc_is_chain_complex X _) ⬝ _, -- exact respect_pt -- end -- definition is_exact_at_t_transfer {X : left_group_chain_complex} {Y : N → Type*} -- {g : Π{n : N}, Y (S n) →* Y n} (e : Π{n}, X n ≃* Y n) -- (p : Π{n} (x : X (S n)), e (lgcc_to_fn X n x) = g (e x)) {n : N} -- (H : is_exact_at_lg X n) : is_exact_at_lg (transfer_left_group_chain_complex X @g @e @p) n := -- begin -- intro y q, esimp at *, -- have H2 : lgcc_to_fn X n (e⁻¹ᵉ* y) = pt, -- begin -- refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _, -- refine ap _ q ⬝ _, -- exact respect_pt e⁻¹ᵉ* -- end, -- cases (H _ H2) with x r, -- refine image.mk (e x) _, -- refine (p x)⁻¹ ⬝ _, -- refine ap e r ⬝ _, -- apply right_inv -- end /- The following theorems state that in a chain complex, if certain types are contractible, and the chain complex is exact at the right spots, a map in the chain complex is an embedding/surjection/equivalence. For the first and third we also need to assume that the map is a group homomorphism (and hence that the two types around it are groups). -/ definition is_embedding_of_trivial (X : chain_complex N) {n : N} (H : is_exact_at X n) [HX : is_contr (X (S (S n)))] [pgroup (X n)] [pgroup (X (S n))] [is_homomorphism (cc_to_fn X n)] : is_embedding (cc_to_fn X n) := begin apply is_embedding_homomorphism, intro g p, induction H g p with x q, have r : pt = x, from !is_prop.elim, induction r, refine q⁻¹ ⬝ _, apply respect_pt end definition is_surjective_of_trivial (X : chain_complex N) {n : N} (H : is_exact_at X n) [HX : is_contr (X n)] : is_surjective (cc_to_fn X (S n)) := begin intro g, refine trunc.elim _ (H g !is_prop.elim), apply tr end definition is_equiv_of_trivial (X : chain_complex N) {n : N} (H1 : is_exact_at X n) (H2 : is_exact_at X (S n)) [HX1 : is_contr (X n)] [HX2 : is_contr (X (S (S (S n))))] [pgroup (X (S n))] [pgroup (X (S (S n)))] [is_homomorphism (cc_to_fn X (S n))] : is_equiv (cc_to_fn X (S n)) := begin apply is_equiv_of_is_surjective_of_is_embedding, { apply is_embedding_of_trivial X, apply H2}, { apply is_surjective_of_trivial X, apply H1}, end definition is_contr_of_is_embedding_of_is_surjective {N : succ_str} (X : chain_complex N) {n : N} (H : is_exact_at X (S n)) [is_embedding (cc_to_fn X n)] [H2 : is_surjective (cc_to_fn X (S (S (S n))))] : is_contr (X (S (S n))) := begin apply is_contr.mk pt, intro x, have p : cc_to_fn X n (cc_to_fn X (S n) x) = cc_to_fn X n pt, from !cc_is_chain_complex ⬝ !respect_pt⁻¹, have q : cc_to_fn X (S n) x = pt, from is_injective_of_is_embedding p, induction H x q with y r, induction H2 y with z s, exact (cc_is_chain_complex X _ z)⁻¹ ⬝ ap (cc_to_fn X _) s ⬝ r end end end chain_complex