/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis Basic facts about the positive natural numbers. Developed primarily for use in the construction of ℝ. For the most part, the only theorems here are those needed for that construction. -/ import data.rat.order data.nat open nat rat section pnat inductive pnat : Type := pos : Π n : nat, n > 0 → pnat notation `ℕ+` := pnat definition nat_of_pnat (p : pnat) : ℕ := pnat.rec_on p (λ n H, n) local postfix `~` : std.prec.max_plus := nat_of_pnat theorem nat_of_pnat_pos (p : pnat) : p~ > 0 := pnat.rec_on p (λ n H, H) definition add (p q : pnat) : pnat := pnat.pos (p~ + q~) (nat.add_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q)) infix `+` := add definition mul (p q : pnat) : pnat := pnat.pos (p~ * q~) (nat.mul_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q)) infix `*` := mul definition le (p q : pnat) := p~ ≤ q~ infix `≤` := le notation p `≥` q := q ≤ p definition lt (p q : pnat) := p~ < q~ infix `<` := lt protected theorem pnat.eq {p q : ℕ+} : p~ = q~ → p = q := pnat.cases_on p (λ p' Hp, pnat.cases_on q (λ q' Hq, begin rewrite ↑nat_of_pnat, intro H, generalize Hp, generalize Hq, rewrite H, intro Hp Hq, apply rfl end)) definition pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) := pnat.rec_on p (λ n H, pnat.rec_on q (λ m H2, if Hl : n ≤ m then decidable.inl Hl else decidable.inr Hl)) definition pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) := pnat.rec_on p (λ n H, pnat.rec_on q (λ m H2, if Hl : n < m then decidable.inl Hl else decidable.inr Hl)) theorem ple.trans {p q r : pnat} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2 definition max (p q : pnat) := pnat.pos (nat.max (p~) (q~)) (nat.lt_of_lt_of_le (!nat_of_pnat_pos) (!le_max_right)) theorem max_right (a b : ℕ+) : max a b ≥ b := !le_max_right theorem max_left (a b : ℕ+) : max a b ≥ a := !le_max_left theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b := have Hnat : nat.max a~ b~ = b~, from nat.max_eq_right H, pnat.eq Hnat theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a := have Hnat : nat.max a~ b~ = a~, from nat.max_eq_left H, pnat.eq Hnat theorem pnat.le_of_lt {a b : ℕ+} (H : a < b) : a ≤ b := nat.le_of_lt H theorem pnat.not_lt_of_le {a b : ℕ+} (H : a ≤ b) : ¬ (b < a) := nat.not_lt_of_ge H theorem pnat.le_of_not_lt {a b : ℕ+} (H : ¬ a < b) : b ≤ a := nat.le_of_not_gt H theorem pnat.eq_of_le_of_ge {a b : ℕ+} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := pnat.eq (nat.eq_of_le_of_ge H1 H2) theorem pnat.le.refl (a : ℕ+) : a ≤ a := !nat.le.refl notation 2 := pnat.pos 2 dec_trivial notation 3 := pnat.pos 3 dec_trivial definition pone : pnat := pnat.pos 1 dec_trivial definition pnat.to_rat [reducible] (n : ℕ+) : ℚ := pnat.rec_on n (λ n H, of_nat n) theorem pnat.to_rat_of_nat (n : ℕ+) : pnat.to_rat n = of_nat n~ := pnat.rec_on n (λ n H, rfl) -- these will come in rat theorem rat_of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial theorem rat_of_pnat_ge_one (n : ℕ+) : pnat.to_rat n ≥ 1 := pnat.rec_on n (λ m h, (iff.mp' !of_nat_le_of_nat) (succ_le_of_lt h)) theorem rat_of_pnat_is_pos (n : ℕ+) : pnat.to_rat n > 0 := pnat.rec_on n (λ m h, (iff.mp' !of_nat_pos) h) theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : m ≤ n) : of_nat m ≤ of_nat n := (iff.mp' !of_nat_le_of_nat) H theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : m < n) : of_nat m < of_nat n := (iff.mp' !of_nat_lt_of_nat) H theorem pnat_le_to_rat_le {m n : ℕ+} (H : m ≤ n) : pnat.to_rat m ≤ pnat.to_rat n := begin rewrite *pnat.to_rat_of_nat, apply of_nat_le_of_nat_of_le H end theorem pnat_lt_to_rat_lt {m n : ℕ+} (H : m < n) : pnat.to_rat m < pnat.to_rat n := begin rewrite *pnat.to_rat_of_nat, apply of_nat_lt_of_nat_of_lt H end theorem rat_le_to_pnat_le {m n : ℕ+} (H : pnat.to_rat m ≤ pnat.to_rat n) : m ≤ n := begin rewrite *pnat.to_rat_of_nat at H, apply (iff.mp !of_nat_le_of_nat) H end definition inv (n : ℕ+) : ℚ := (1 : ℚ) / pnat.to_rat n postfix `⁻¹` := inv theorem inv_pos (n : ℕ+) : n⁻¹ > 0 := div_pos_of_pos !rat_of_pnat_is_pos theorem inv_le_one (n : ℕ+) : n⁻¹ ≤ (1 : ℚ) := begin rewrite [↑inv, -one_div_one], apply div_le_div_of_le, apply rat.zero_lt_one, apply rat_of_pnat_ge_one end theorem inv_lt_one_of_gt {n : ℕ+} (H : n~ > 1) : n⁻¹ < (1 : ℚ) := begin rewrite [↑inv, -one_div_one], apply div_lt_div_of_lt, apply rat.zero_lt_one, rewrite pnat.to_rat_of_nat, apply (of_nat_lt_of_nat_of_lt H) end theorem pone_inv : pone⁻¹ = 1 := rfl theorem add_invs_nonneg (m n : ℕ+) : 0 ≤ m⁻¹ + n⁻¹ := begin apply rat.le_of_lt, apply rat.add_pos, repeat apply inv_pos end set_option pp.coercions true theorem pnat_one_mul (n : ℕ+) : pone * n = n := begin apply pnat.eq, rewrite [↑pone, ↑mul, ↑nat_of_pnat, one_mul] end theorem pone_le (n : ℕ+) : pone ≤ n := succ_le_of_lt (nat_of_pnat_pos n) theorem pnat_to_rat_mul (a b : ℕ+) : pnat.to_rat (a * b) = pnat.to_rat a * pnat.to_rat b := by rewrite *pnat.to_rat_of_nat theorem mul_lt_mul_left (a b c : ℕ+) (H : a < b) : a * c < b * c := nat.mul_lt_mul_of_pos_right H !nat_of_pnat_pos theorem half_shrink_strong (n : ℕ+) : (2 * n)⁻¹ < n⁻¹ := begin rewrite ↑inv, apply div_lt_div_of_lt, apply rat_of_pnat_is_pos, have H : n~ < (2 * n)~, begin rewrite -pnat_one_mul at {1}, apply mul_lt_mul_left, apply dec_trivial end, rewrite *pnat.to_rat_of_nat, apply of_nat_lt_of_nat_of_lt, apply H end theorem half_shrink (n : ℕ+) : (2 * n)⁻¹ ≤ n⁻¹ := le_of_lt !half_shrink_strong theorem inv_ge_of_le {p q : ℕ+} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ := div_le_div_of_le !rat_of_pnat_is_pos (pnat_le_to_rat_le H) theorem inv_gt_of_lt {p q : ℕ+} (H : p < q) : q⁻¹ < p⁻¹ := div_lt_div_of_lt !rat_of_pnat_is_pos (pnat_lt_to_rat_lt H) theorem ge_of_inv_le {p q : ℕ+} (H : p⁻¹ ≤ q⁻¹) : q ≤ p := rat_le_to_pnat_le (le_of_div_le !rat_of_pnat_is_pos H) theorem two_mul (p : ℕ+) : pnat.to_rat (2 * p) = (1 + 1) * pnat.to_rat p := by rewrite pnat_to_rat_mul theorem padd_halves (p : ℕ+) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := begin rewrite [↑inv, -(@add_halves (1 / (pnat.to_rat p))), *div_div_eq_div_mul'], have H : pnat.to_rat (2 * p) = pnat.to_rat p * (1 + 1), by rewrite [rat.mul.comm, two_mul], rewrite *H end theorem add_halves_double (m n : ℕ+) : m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) := have simp [visible] : ∀ a b : ℚ, (a + a) + (b + b) = (a + b) + (a + b), by intros; rewrite [rat.add.assoc, -(rat.add.assoc a b b), {_+b}rat.add.comm, -*rat.add.assoc], by rewrite [-padd_halves m, -padd_halves n, simp] theorem pnat_div_helper {p q : ℕ+} : (p * q)⁻¹ = p⁻¹ * q⁻¹ := by rewrite [↑inv, pnat_to_rat_mul, one_div_mul_one_div'''] theorem inv_mul_le_inv (p q : ℕ+) : (p * q)⁻¹ ≤ q⁻¹ := begin rewrite [pnat_div_helper, -{q⁻¹}rat.one_mul at {2}], apply rat.mul_le_mul, apply inv_le_one, apply rat.le.refl, apply rat.le_of_lt, apply inv_pos, apply rat.le_of_lt rat.zero_lt_one end theorem pnat_mul_le_mul_left' (a b c : ℕ+) (H : a ≤ b) : c * a ≤ c * b := nat.mul_le_mul_of_nonneg_left H (le_of_lt !nat_of_pnat_pos) theorem pnat_mul_assoc (a b c : ℕ+) : a * b * c = a * (b * c) := pnat.eq !nat.mul.assoc theorem pnat_mul_comm (a b : ℕ+) : a * b = b * a := pnat.eq !nat.mul.comm theorem pnat_add_assoc (a b c : ℕ+) : a + b + c = a + (b + c) := pnat.eq !nat.add.assoc theorem pnat.mul_le_mul_left (p q : ℕ+) : q ≤ p * q := begin rewrite [-pnat_one_mul at {1}, pnat_mul_comm, pnat_mul_comm p], apply pnat_mul_le_mul_left', apply pone_le end theorem pnat.mul_le_mul_right (p q : ℕ+) : p ≤ p * q := by rewrite pnat_mul_comm; apply pnat.mul_le_mul_left theorem one_lt_two : pone < 2 := dec_trivial theorem pnat.lt_of_not_le {p q : ℕ+} (H : ¬ p ≤ q) : q < p := nat.lt_of_not_ge H theorem pnat.inv_cancel (p : ℕ+) : pnat.to_rat p * p⁻¹ = (1 : ℚ) := mul_one_div_cancel (ne.symm (rat.ne_of_lt !rat_of_pnat_is_pos)) theorem pnat.inv_cancel_right (p : ℕ+) : p⁻¹ * pnat.to_rat p = (1 : ℚ) := by rewrite rat.mul.comm; apply pnat.inv_cancel theorem pnat_lt_add_left (p q : ℕ+) : p < p + q := begin have H : p~ < p~ + q~, begin rewrite -nat.add_zero at {1}, apply nat.add_lt_add_left, apply nat_of_pnat_pos end, apply H end theorem inv_add_lt_left (p q : ℕ+) : (p + q)⁻¹ < p⁻¹ := by apply inv_gt_of_lt; apply pnat_lt_add_left theorem div_le_pnat (q : ℚ) (n : ℕ+) (H : q ≥ n⁻¹) : 1 / q ≤ pnat.to_rat n := begin apply rat.div_le_of_le_mul, apply rat.lt_of_lt_of_le, apply inv_pos, rotate 1, apply H, apply rat.le_mul_of_div_le, apply rat_of_pnat_is_pos, apply H end theorem pnat_cancel' (n m : ℕ+) : (n * n * m)⁻¹ * (pnat.to_rat n * pnat.to_rat n) = m⁻¹ := begin have simp : ∀ a b c : ℚ, (a * a * (b * b * c)) = (a * b) * (a * b) * c, from sorry, -- simp rewrite [rat.mul.comm, *pnat_div_helper, simp, *pnat.inv_cancel, *rat.one_mul] end end pnat