/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis The real numbers, constructed as equivalence classes of Cauchy sequences of rationals. This construction follows Bishop and Bridges (1985). To do: o Break positive naturals into their own file and fill in sorry's o Fill in sorrys for helper lemmas that will not be handled by simplifier o Rename things and possibly make theorems private -/ import data.real.basic data.rat data.nat open -[coercions] rat open -[coercions] nat open eq eq.ops pnat local notation 0 := rat.of_num 0 local notation 1 := rat.of_num 1 ---------------------------------------------------------------------------------------------------- -- pnat theorems notation 2 := pnat.pos (of_num 2) dec_trivial -- rat theorems theorem ge_sub_of_abs_sub_le_left {a b c : ℚ} (H : abs (a - b) ≤ c) : a ≥ b - c := sorry theorem ge_sub_of_abs_sub_le_right {a b c : ℚ} (H : abs (a - b) ≤ c) : b ≥ a - c := ge_sub_of_abs_sub_le_left (!abs_sub ▸ H) theorem sep_by_inv {a b : ℚ} (H : a > b) : ∃ N : ℕ+, a > (b + N⁻¹ + N⁻¹) := sorry theorem helper_1 {a : ℚ} (H : a > 0) : -a + -a ≤ -a := sorry theorem rewrite_helper8 (a b c : ℚ) : a - b = c - b + (a - c) := sorry -- simp --------- namespace s definition pos (s : seq) := ∃ n : ℕ+, n⁻¹ < (s n) definition nonneg (s : seq) := ∀ n : ℕ+, -(n⁻¹) ≤ s n theorem bdd_away_of_pos {s : seq} (Hs : regular s) (H : pos s) : ∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → (s n) ≥ N⁻¹ := begin apply exists.elim H, intro n Hn, let Em := sep_by_inv Hn, apply exists.elim Em, intro N HN, existsi N, intro m Hm, have Habs : abs (s m - s n) ≥ s n - s m, by rewrite abs_sub; apply le_abs_self, have Habs' : s m + abs (s m - s n) ≥ s n, from (iff.mp' (le_add_iff_sub_left_le _ _ _)) Habs, have HN' : N⁻¹ + N⁻¹ ≤ s n - n⁻¹, begin apply iff.mp' (le_add_iff_sub_right_le _ _ _), rewrite [sub_neg_eq_add, add.comm, -add.assoc], apply le_of_lt HN end, rewrite rat.add.comm at Habs', have Hin : s m ≥ N⁻¹, from calc s m ≥ s n - abs (s m - s n) : (iff.mp (le_add_iff_sub_left_le _ _ _)) Habs' ... ≥ s n - (m⁻¹ + n⁻¹) : rat.sub_le_sub_left !Hs ... = s n - m⁻¹ - n⁻¹ : by rewrite sub_add_eq_sub_sub ... = s n - n⁻¹ - m⁻¹ : by rewrite [add.assoc, (add.comm (-m⁻¹)), -add.assoc] ... ≥ s n - n⁻¹ - N⁻¹ : rat.sub_le_sub_left (inv_ge_of_le Hm) ... ≥ N⁻¹ + N⁻¹ - N⁻¹ : rat.sub_le_sub_right HN' ... = N⁻¹ : by rewrite rat.add_sub_cancel, apply Hin end theorem pos_of_bdd_away {s : seq} (H : ∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → (s n) ≥ N⁻¹) : pos s := begin rewrite ↑pos, apply exists.elim H, intro N HN, existsi (N + pone), apply lt_of_lt_of_le, apply inv_add_lt_left, apply HN, apply pnat.le_of_lt, apply pnat_lt_add_left end theorem bdd_within_of_nonneg {s : seq} (Hs : regular s) (H : nonneg s) : ∀ n : ℕ+, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → s m ≥ -n⁻¹ := begin intros, existsi n, intro m Hm, rewrite ↑nonneg at H, apply le.trans, apply neg_le_neg, apply inv_ge_of_le, apply Hm, apply H end theorem nonneg_of_bdd_within {s : seq} (Hs : regular s) (H : ∀n : ℕ+, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → s m ≥ -n⁻¹) : nonneg s := begin rewrite ↑nonneg, intro k, apply squeeze_2, intro ε Hε, apply exists.elim (H (pceil ((1 + 1) / ε))), intro N HN, let HN' := HN (max (pceil ((1+1)/ε)) N), let HN'' := HN' (!max_right), apply le.trans, rotate 1, apply ge_sub_of_abs_sub_le_left, apply Hs, apply (max (pceil ((1+1)/ε)) N), rewrite [↑rat.sub, neg_add, {_ + (-k⁻¹ + _)}add.comm, *add.assoc], apply rat.add_le_add_left, apply le.trans, rotate 1, apply rat.add_le_add, rotate 1, apply HN'', rotate_right 1, apply neg_le_neg, apply inv_ge_of_le, apply max_left, rewrite -neg_add, apply neg_le_neg, apply le.trans, apply rat.add_le_add, repeat (apply inv_pceil_div; apply rat.add_pos; repeat apply zero_lt_one; apply Hε), have Hone : 1 = of_num 1, from rfl, rewrite [Hone, add_halves], apply le.refl end theorem pos_of_pos_equiv {s t : seq} (Hs : regular s) (Heq : s ≡ t) (Hp : pos s) : pos t := begin rewrite [↑pos at *], apply exists.elim (bdd_away_of_pos Hs Hp), intro N HN, existsi 2 * 2 * N, apply lt_of_lt_of_le, rotate 1, apply ge_sub_of_abs_sub_le_right, apply Heq, have Hs4 : N⁻¹ ≤ s (2 * 2 * N), from HN _ (!pnat.mul_le_mul_left), apply lt_of_lt_of_le, rotate 1, apply iff.mp' (rat.add_le_add_right_iff _ _ _), apply Hs4, rewrite [*pnat_mul_assoc, padd_halves, -(padd_halves N), rat.add_sub_cancel], apply half_shrink_strong end theorem nonneg_of_nonneg_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) (Hp : nonneg s) : nonneg t := begin apply nonneg_of_bdd_within, apply Ht, intros, let Bd := (bdd_within_of_nonneg Hs Hp) (2 * 2 * n), apply exists.elim Bd, intro Ns HNs, existsi max Ns (2 * 2 * n), intro m Hm, apply le.trans, rotate 1, apply ge_sub_of_abs_sub_le_right, apply Heq, apply le.trans, rotate 1, apply rat.sub_le_sub_right, apply HNs, apply ple.trans, rotate 1, apply Hm, rotate_right 1, apply max_left, have Hms : m⁻¹ ≤ (2 * 2 * n)⁻¹, begin apply inv_ge_of_le, apply ple.trans, rotate 1, apply Hm; apply max_right end, have Hms' : m⁻¹ + m⁻¹ ≤ (2 * 2 * n)⁻¹ + (2 * 2 * n)⁻¹, from add_le_add Hms Hms, apply le.trans, rotate 1, apply rat.sub_le_sub_left, apply Hms', rewrite [*pnat_mul_assoc, padd_halves, -neg_add, -padd_halves n], apply neg_le_neg, apply rat.add_le_add_right, apply half_shrink end definition s_le (a b : seq) := nonneg (sadd b (sneg a)) definition s_lt (a b : seq) := pos (sadd b (sneg a)) theorem zero_nonneg : nonneg zero := begin rewrite ↑[nonneg, zero], intros, apply neg_nonpos_of_nonneg, apply le_of_lt, apply inv_pos end theorem s_zero_lt_one : s_lt zero one := begin rewrite [↑s_lt, ↑zero, ↑sadd, ↑sneg, ↑one, neg_zero, add_zero, ↑pos], existsi 2, apply inv_lt_one_of_gt, apply one_lt_two end theorem le.refl {s : seq} (Hs : regular s) : s_le s s := begin apply nonneg_of_nonneg_equiv, rotate 2, apply equiv.symm, apply neg_s_cancel s Hs, apply zero_nonneg, apply zero_is_reg, apply reg_add_reg Hs (reg_neg_reg Hs) end theorem s_nonneg_of_pos {s : seq} (Hs : regular s) (H : pos s) : nonneg s := begin apply nonneg_of_bdd_within, apply Hs, intros, let Bt := bdd_away_of_pos Hs H, apply exists.elim Bt, intro N HN, existsi N, intro m Hm, apply le.trans, rotate 1, apply HN, apply Hm, apply le.trans, rotate 1, apply le_of_lt, apply inv_pos, rewrite -neg_zero, apply neg_le_neg, apply le_of_lt, apply inv_pos end theorem s_le_of_s_lt {s t : seq} (Hs : regular s) (Ht : regular t) (H : s_lt s t) : s_le s t := begin rewrite [↑s_le, ↑s_lt at *], apply s_nonneg_of_pos, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end theorem s_neg_add_eq_s_add_neg (s t : seq) : sneg (sadd s t) ≡ sadd (sneg s) (sneg t) := begin rewrite [↑equiv, ↑sadd, ↑sneg], intros, rewrite [rat.neg_add, sub_self, abs_zero], apply add_invs_nonneg end theorem equiv_cancel_middle {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) : sadd (sadd u t) (sneg (sadd u s)) ≡ sadd t (sneg s) := begin let Hz := zero_is_reg, apply equiv.trans, rotate 3, apply add_well_defined, rotate 4, apply s_add_comm, apply s_neg_add_eq_s_add_neg, apply equiv.trans, rotate 3, apply s_add_assoc, rotate 2, apply add_well_defined, rotate 4, apply equiv.refl, apply equiv.trans, rotate 4, apply equiv.refl, rotate_right 1, apply equiv.trans, rotate 3, apply equiv.symm, apply s_add_assoc, rotate 2, apply equiv.trans, rotate 4, apply s_zero_add, rotate_right 1, apply add_well_defined, rotate 4, apply neg_s_cancel, rotate 1, apply equiv.refl, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end theorem add_le_add_of_le_right {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_le s t) : ∀ u : seq, regular u → s_le (sadd u s) (sadd u t) := begin intro u Hu, rewrite [↑s_le at *], apply nonneg_of_nonneg_equiv, rotate 2, apply equiv.symm, apply equiv_cancel_middle, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end theorem s_add_lt_add_left {s t : seq} (Hs : regular s) (Ht : regular t) (Hst : s_lt s t) {u : seq} (Hu : regular u) : s_lt (sadd u s) (sadd u t) := begin rewrite ↑s_lt at *, apply pos_of_pos_equiv, rotate 1, apply equiv.symm, apply equiv_cancel_middle, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end theorem add_nonneg_of_nonneg {s t : seq} (Hs : nonneg s) (Ht : nonneg t) : nonneg (sadd s t) := begin rewrite [↑nonneg at *, ↑sadd], intros, rewrite [-padd_halves, neg_add], apply add_le_add, apply Hs, apply Ht end theorem le.trans {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Lst : s_le s t) (Ltu : s_le t u) : s_le s u := begin rewrite ↑s_le at *, let Rz := zero_is_reg, have Hsum : nonneg (sadd (sadd u (sneg t)) (sadd t (sneg s)) ), from add_nonneg_of_nonneg Ltu Lst, have H' : nonneg (sadd (sadd u (sadd (sneg t) t)) (sneg s)), begin apply nonneg_of_nonneg_equiv, rotate 2, apply add_well_defined, rotate 4, apply s_add_assoc, repeat (apply reg_add_reg | apply reg_neg_reg | assumption), apply equiv.refl, apply nonneg_of_nonneg_equiv, rotate 2, apply equiv.symm, apply s_add_assoc, rotate 2, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end, have H'' : sadd (sadd u (sadd (sneg t) t)) (sneg s) ≡ sadd u (sneg s), begin apply add_well_defined, rotate 4, apply equiv.trans, rotate 3, apply add_well_defined, rotate 4, apply equiv.refl, apply s_neg_cancel, rotate 1, apply s_add_zero, rotate 1, apply equiv.refl, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end, apply nonneg_of_nonneg_equiv, rotate 2, apply H'', apply H', repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end theorem equiv_of_le_of_ge {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_le s t) (Lts : s_le t s) : s ≡ t := begin apply equiv_of_diff_equiv_zero, rotate 2, rewrite [↑s_le at *, ↑nonneg at *, ↑equiv, ↑sadd at *, ↑sneg at *], intros, rewrite [↑zero, sub_zero], apply abs_le_of_le_of_neg_le, apply le_of_neg_le_neg, rewrite [2 neg_add, neg_neg], apply rat.le.trans, apply helper_1, apply inv_pos, rewrite add.comm, apply Lst, apply le_of_neg_le_neg, rewrite [neg_add, neg_neg], apply rat.le.trans, apply helper_1, apply inv_pos, apply Lts, repeat assumption end definition sep (s t : seq) := s_lt s t ∨ s_lt t s local infix `≢` : 50 := sep theorem le_and_sep_of_lt {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_lt s t) : s_le s t ∧ sep s t := begin apply and.intro, rewrite [↑s_lt at *, ↑pos at *, ↑s_le, ↑nonneg], intros, apply exists.elim Lst, intro N HN, let Rns := reg_neg_reg Hs, let Rtns := reg_add_reg Ht Rns, let Habs := ge_sub_of_abs_sub_le_right (Rtns N n), rewrite [sub_add_eq_sub_sub at Habs], exact (calc sadd t (sneg s) n ≥ sadd t (sneg s) N - N⁻¹ - n⁻¹ : Habs ... ≥ 0 - n⁻¹: begin apply rat.sub_le_sub_right, apply le_of_lt, apply (iff.mp' (sub_pos_iff_lt _ _)), apply HN end ... = -n⁻¹ : by rewrite zero_sub), rewrite ↑sep, exact or.inl Lst end theorem lt_of_le_and_sep {s t : seq} (Hs : regular s) (Ht : regular t) (H : s_le s t ∧ sep s t) : s_lt s t := begin let Le := and.left H, let Hsep := and.right H, rewrite [↑sep at Hsep], apply or.elim Hsep, intro P, exact P, intro Hlt, rewrite [↑s_le at Le, ↑nonneg at Le, ↑s_lt at Hlt, ↑pos at Hlt], apply exists.elim Hlt, intro N HN, let LeN := Le N, let HN' := (iff.mp' (neg_lt_neg_iff_lt _ _)) HN, rewrite [↑sadd at HN', ↑sneg at HN', neg_add at HN', neg_neg at HN', add.comm at HN'], let HN'' := not_le_of_gt HN', apply absurd LeN HN'' end theorem lt_iff_le_and_sep {s t : seq} (Hs : regular s) (Ht : regular t) : s_lt s t ↔ s_le s t ∧ sep s t := iff.intro (le_and_sep_of_lt Hs Ht) (lt_of_le_and_sep Hs Ht) theorem s_neg_zero : sneg zero ≡ zero := begin rewrite ↑[sneg, zero, equiv], intros, rewrite [sub_zero, abs_neg, abs_zero], apply add_invs_nonneg end theorem s_sub_zero {s : seq} (Hs : regular s) : sadd s (sneg zero) ≡ s := begin apply equiv.trans, rotate 3, apply add_well_defined, rotate 4, apply equiv.refl, apply s_neg_zero, apply s_add_zero, repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg) end theorem s_pos_of_gt_zero {s : seq} (Hs : regular s) (Hgz : s_lt zero s) : pos s := begin rewrite [↑s_lt at *], apply pos_of_pos_equiv, rotate 1, apply s_sub_zero, repeat (assumption | apply reg_add_reg | apply reg_neg_reg), apply zero_is_reg end theorem s_gt_zero_of_pos {s : seq} (Hs : regular s) (Hp : pos s) : s_lt zero s := begin rewrite ↑s_lt, apply pos_of_pos_equiv, rotate 1, apply equiv.symm, apply s_sub_zero, repeat assumption end theorem s_nonneg_of_ge_zero {s : seq} (Hs : regular s) (Hgz : s_le zero s) : nonneg s := begin rewrite ↑s_le at *, apply nonneg_of_nonneg_equiv, rotate 2, apply s_sub_zero, repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg) end theorem s_ge_zero_of_nonneg {s : seq} (Hs : regular s) (Hn : nonneg s) : s_le zero s := begin rewrite ↑s_le, apply nonneg_of_nonneg_equiv, rotate 2, apply equiv.symm, apply s_sub_zero, repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg) end theorem s_mul_pos_of_pos {s t : seq} (Hs : regular s) (Ht : regular t) (Hps : pos s) (Hpt : pos t) : pos (smul s t) := begin rewrite [↑pos at *], apply exists.elim (bdd_away_of_pos Hs Hps), intros Ns HNs, apply exists.elim (bdd_away_of_pos Ht Hpt), intros Nt HNt, existsi 2 * max Ns Nt * max Ns Nt, rewrite ↑smul, apply lt_of_lt_of_le, rotate 1, apply rat.mul_le_mul, apply HNs, apply ple.trans, apply max_left Ns Nt, rewrite -pnat_mul_assoc, apply pnat.mul_le_mul_left, apply HNt, apply ple.trans, apply max_right Ns Nt, rewrite -pnat_mul_assoc, apply pnat.mul_le_mul_left, apply le_of_lt, apply inv_pos, apply rat.le.trans, rotate 1, apply HNs, apply ple.trans, apply max_left Ns Nt, rewrite -pnat_mul_assoc, apply pnat.mul_le_mul_left, rewrite pnat_div_helper, apply rat.mul_lt_mul, rewrite [pnat_div_helper, -one_mul Ns⁻¹], apply rat.mul_lt_mul, apply inv_lt_one_of_gt, apply dec_trivial, apply inv_ge_of_le, apply max_left, apply inv_pos, apply le_of_lt zero_lt_one, apply inv_ge_of_le, apply max_right, apply inv_pos, repeat (apply le_of_lt; apply inv_pos) end theorem s_mul_gt_zero_of_gt_zero {s t : seq} (Hs : regular s) (Ht : regular t) (Hzs : s_lt zero s) (Hzt : s_lt zero t) : s_lt zero (smul s t) := s_gt_zero_of_pos (reg_mul_reg Hs Ht) (s_mul_pos_of_pos Hs Ht (s_pos_of_gt_zero Hs Hzs) (s_pos_of_gt_zero Ht Hzt)) theorem le_of_lt_or_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (Hor : (s_lt s t) ∨ (s ≡ t)) : s_le s t := or.elim Hor (begin intro Hlt, apply s_le_of_s_lt Hs Ht Hlt end) (begin intro Heq, rewrite ↑s_le, apply nonneg_of_nonneg_equiv, rotate 3, apply zero_nonneg, apply zero_is_reg, apply reg_add_reg Ht (reg_neg_reg Hs), apply equiv.symm, apply diff_equiv_zero_of_equiv, rotate 2, apply equiv.symm, apply Heq, repeat assumption end) theorem s_zero_mul {s : seq} : smul s zero ≡ zero := begin rewrite [↑equiv, ↑smul, ↑zero], intros, rewrite [mul_zero, sub_zero, abs_zero], apply add_invs_nonneg end theorem s_mul_nonneg_of_pos_of_zero {s t : seq} (Hs : regular s) (Ht : regular t) (Hps : pos s) (Hpt : zero ≡ t) : nonneg (smul s t) := begin apply nonneg_of_nonneg_equiv, rotate 2, apply mul_well_defined, rotate 4, apply equiv.refl, apply Hpt, apply nonneg_of_nonneg_equiv, rotate 2, apply equiv.symm, apply s_zero_mul, apply zero_nonneg, repeat (assumption | apply reg_mul_reg | apply zero_is_reg) end theorem s_mul_nonneg_of_nonneg {s t : seq} (Hs : regular s) (Ht : regular t) (Hps : nonneg s) (Hpt : nonneg t) : nonneg (smul s t) := begin intro n, rewrite ↑smul, apply rat.le.by_cases 0 (s (((K₂ s t) * 2) * n)), intro Hsp, apply rat.le.by_cases 0 (t (((K₂ s t) * 2) * n)), intro Htp, apply rat.le.trans, rotate 1, apply rat.mul_nonneg Hsp Htp, rotate_right 1, apply le_of_lt, apply neg_neg_of_pos, apply inv_pos, intro Htn, apply rat.le.trans, rotate 1, apply rat.mul_le_mul_of_nonpos_right, apply rat.le.trans, apply le_abs_self, apply canon_2_bound_left s t Hs, apply Htn, rotate_right 1, apply rat.le.trans, rotate 1, apply rat.mul_le_mul_of_nonneg_left, apply Hpt, apply le_of_lt, apply rat_of_pnat_is_pos, rotate 1, rewrite -neg_mul_eq_mul_neg, apply neg_le_neg, rewrite [*pnat_mul_assoc, pnat_div_helper, -mul.assoc, pnat.inv_cancel, one_mul], apply inv_ge_of_le, apply pnat.mul_le_mul_left, intro Hsn, apply rat.le.by_cases 0 (t (((K₂ s t) * 2) * n)), intro Htp, apply rat.le.trans, rotate 1, apply rat.mul_le_mul_of_nonpos_left, apply rat.le.trans, apply le_abs_self, apply canon_2_bound_right s t Ht, apply Hsn, rotate_right 1, apply rat.le.trans, rotate 1, apply rat.mul_le_mul_of_nonneg_right, apply Hps, apply le_of_lt, apply rat_of_pnat_is_pos, rotate 1, rewrite -neg_mul_eq_neg_mul, apply neg_le_neg, rewrite [*pnat_mul_assoc, pnat_div_helper, mul.comm, -mul.assoc, pnat.inv_cancel, one_mul], apply inv_ge_of_le, apply pnat.mul_le_mul_left, intro Htn, apply rat.le.trans, rotate 1, apply mul_nonneg_of_nonpos_of_nonpos, apply Hsn, apply Htn, apply le_of_lt, apply neg_neg_of_pos, apply inv_pos end theorem s_mul_ge_zero_of_ge_zero {s t : seq} (Hs : regular s) (Ht : regular t) (Hzs : s_le zero s) (Hzt : s_le zero t) : s_le zero (smul s t) := begin let Hzs' := s_nonneg_of_ge_zero Hs Hzs, let Htz' := s_nonneg_of_ge_zero Ht Hzt, apply s_ge_zero_of_nonneg, rotate 1, apply s_mul_nonneg_of_nonneg, repeat assumption, apply reg_mul_reg Hs Ht end theorem not_lt_self (s : seq) : ¬ s_lt s s := begin intro Hlt, rewrite [↑s_lt at Hlt, ↑pos at Hlt], apply exists.elim Hlt, intro n Hn, rewrite [↑sadd at Hn, ↑sneg at Hn, sub_self at Hn], apply absurd Hn (rat.not_lt_of_ge (rat.le_of_lt !inv_pos)) end theorem not_sep_self (s : seq) : ¬ s ≢ s := begin intro Hsep, rewrite ↑sep at Hsep, let Hsep' := (iff.mp (!or_self)) Hsep, apply absurd Hsep' (!not_lt_self) end theorem le_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Hv : regular v) (Hsu : s ≡ u) (Htv : t ≡ v) : s_le s t ↔ s_le u v := iff.intro (begin intro Hle, rewrite [↑s_le at *], apply nonneg_of_nonneg_equiv, rotate 2, apply add_well_defined, rotate 4, apply Htv, apply neg_well_defined, apply Hsu, apply Hle, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end) (begin intro Hle, rewrite [↑s_le at *], apply nonneg_of_nonneg_equiv, rotate 2, apply add_well_defined, rotate 4, apply equiv.symm, apply Htv, apply neg_well_defined, apply equiv.symm, apply Hsu, apply Hle, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end) theorem lt_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Hv : regular v) (Hsu : s ≡ u) (Htv : t ≡ v) : s_lt s t ↔ s_lt u v := iff.intro (begin intro Hle, rewrite [↑s_lt at *], apply pos_of_pos_equiv, rotate 1, apply add_well_defined, rotate 4, apply Htv, apply neg_well_defined, apply Hsu, apply Hle, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end) (begin intro Hle, rewrite [↑s_lt at *], apply pos_of_pos_equiv, rotate 1, apply add_well_defined, rotate 4, apply equiv.symm, apply Htv, apply neg_well_defined, apply equiv.symm, apply Hsu, apply Hle, repeat (apply reg_add_reg | apply reg_neg_reg | assumption) end) theorem sep_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Hv : regular v) (Hsu : s ≡ u) (Htv : t ≡ v) : s ≢ t ↔ u ≢ v := begin rewrite ↑sep, apply iff.intro, intro Hor, apply or.elim Hor, intro Hlt, apply or.inl, apply iff.mp (lt_well_defined Hs Ht Hu Hv Hsu Htv), assumption, intro Hlt, apply or.inr, apply iff.mp (lt_well_defined Ht Hs Hv Hu Htv Hsu), assumption, intro Hor, apply or.elim Hor, intro Hlt, apply or.inl, apply iff.mp' (lt_well_defined Hs Ht Hu Hv Hsu Htv), assumption, intro Hlt, apply or.inr, apply iff.mp' (lt_well_defined Ht Hs Hv Hu Htv Hsu), assumption end theorem s_lt_of_lt_of_le {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Hst : s_lt s t) (Htu : s_le t u) : s_lt s u := begin let Rtns := reg_add_reg Ht (reg_neg_reg Hs), let Runt := reg_add_reg Hu (reg_neg_reg Ht), have Hcan : ∀ m, sadd u (sneg s) m = (sadd t (sneg s)) m + (sadd u (sneg t)) m, begin intro m, rewrite [↑sadd, ↑sneg, -rewrite_helper8] end, rewrite [↑s_lt at *, ↑s_le at *], apply exists.elim (bdd_away_of_pos Rtns Hst), intro Nt HNt, apply exists.elim (bdd_within_of_nonneg Runt Htu (2 * Nt)), intro Nu HNu, apply pos_of_bdd_away, existsi max (2 * Nt) Nu, intro n Hn, rewrite Hcan, apply rat.le.trans, rotate 1, apply rat.add_le_add, apply HNt, apply ple.trans, apply pnat.mul_le_mul_left 2, apply ple.trans, rotate 1, apply Hn, rotate_right 1, apply max_left, apply HNu, apply ple.trans, rotate 1, apply Hn, rotate_right 1, apply max_right, rewrite [-padd_halves Nt, rat.add_sub_cancel], apply inv_ge_of_le, apply max_left end theorem s_lt_of_le_of_lt {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Hst : s_le s t) (Htu : s_lt t u) : s_lt s u := begin let Rtns := reg_add_reg Ht (reg_neg_reg Hs), let Runt := reg_add_reg Hu (reg_neg_reg Ht), have Hcan : ∀ m, sadd u (sneg s) m = (sadd t (sneg s)) m + (sadd u (sneg t)) m, begin intro m, rewrite [↑sadd, ↑sneg, -rewrite_helper8] end, rewrite [↑s_lt at *, ↑s_le at *], apply exists.elim (bdd_away_of_pos Runt Htu), intro Nu HNu, apply exists.elim (bdd_within_of_nonneg Rtns Hst (2 * Nu)), intro Nt HNt, apply pos_of_bdd_away, existsi max (2 * Nu) Nt, intro n Hn, rewrite Hcan, apply rat.le.trans, rotate 1, apply rat.add_le_add, apply HNt, apply ple.trans, rotate 1, apply Hn, rotate_right 1, apply max_right, apply HNu, apply ple.trans, apply pnat.mul_le_mul_left 2, apply ple.trans, rotate 1, apply Hn, rotate_right 1, apply max_left, rewrite [-padd_halves Nu, neg_add_cancel_left], apply inv_ge_of_le, apply max_left end -------- -- These are currently needed for lin_ordered_comm_ring. /-theorem le_or_ge {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t ∨ s_le t s := sorry theorem lt_or_equiv_of_le {s t : seq} (Hs : regular s) (Ht : regular t) (Hle : s_le s t) : s_lt s t ∨ s ≡ t := begin apply sorry end -- this is not constructive theorem le_iff_lt_or_equiv {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t ↔ s_lt s t ∨ s ≡ t := iff.intro (lt_or_equiv_of_le Hs Ht) (le_of_lt_or_equiv Hs Ht)-/ -------- lift to reg_seqs definition r_lt (s t : reg_seq) := s_lt (reg_seq.sq s) (reg_seq.sq t) definition r_le (s t : reg_seq) := s_le (reg_seq.sq s) (reg_seq.sq t) definition r_sep (s t : reg_seq) := sep (reg_seq.sq s) (reg_seq.sq t) theorem r_le_well_defined (s t u v : reg_seq) (Hsu : requiv s u) (Htv : requiv t v) : r_le s t = r_le u v := propext (le_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) Hsu Htv) theorem r_lt_well_defined (s t u v : reg_seq) (Hsu : requiv s u) (Htv : requiv t v) : r_lt s t = r_lt u v := propext (lt_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) Hsu Htv) theorem r_sep_well_defined (s t u v : reg_seq) (Hsu : requiv s u) (Htv : requiv t v) : r_sep s t = r_sep u v := propext (sep_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) Hsu Htv) theorem r_le.refl (s : reg_seq) : r_le s s := le.refl (reg_seq.is_reg s) theorem r_le.trans {s t u : reg_seq} (Hst : r_le s t) (Htu : r_le t u) : r_le s u := le.trans (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Hst Htu theorem r_equiv_of_le_of_ge {s t : reg_seq} (Hs : r_le s t) (Hu : r_le t s) : requiv s t := equiv_of_le_of_ge (reg_seq.is_reg s) (reg_seq.is_reg t) Hs Hu theorem r_lt_iff_le_and_sep (s t : reg_seq) : r_lt s t ↔ r_le s t ∧ r_sep s t := lt_iff_le_and_sep (reg_seq.is_reg s) (reg_seq.is_reg t) theorem r_add_le_add_of_le_right {s t : reg_seq} (H : r_le s t) (u : reg_seq) : r_le (u + s) (u + t) := add_le_add_of_le_right (reg_seq.is_reg s) (reg_seq.is_reg t) H (reg_seq.sq u) (reg_seq.is_reg u) theorem r_add_le_add_of_le_right_var (s t u : reg_seq) (H : r_le s t) : r_le (u + s) (u + t) := r_add_le_add_of_le_right H u theorem r_mul_pos_of_pos {s t : reg_seq} (Hs : r_lt r_zero s) (Ht : r_lt r_zero t) : r_lt r_zero (s * t) := s_mul_gt_zero_of_gt_zero (reg_seq.is_reg s) (reg_seq.is_reg t) Hs Ht theorem r_mul_nonneg_of_nonneg {s t : reg_seq} (Hs : r_le r_zero s) (Ht : r_le r_zero t) : r_le r_zero (s * t) := s_mul_ge_zero_of_ge_zero (reg_seq.is_reg s) (reg_seq.is_reg t) Hs Ht theorem r_not_lt_self (s : reg_seq) : ¬ r_lt s s := not_lt_self (reg_seq.sq s) theorem r_not_sep_self (s : reg_seq) : ¬ r_sep s s := not_sep_self (reg_seq.sq s) theorem r_le_of_lt {s t : reg_seq} (H : r_lt s t) : r_le s t := s_le_of_s_lt (reg_seq.is_reg s) (reg_seq.is_reg t) H theorem r_lt_of_le_of_lt {s t u : reg_seq} (Hst : r_le s t) (Htu : r_lt t u) : r_lt s u := s_lt_of_le_of_lt (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Hst Htu theorem r_lt_of_lt_of_le {s t u : reg_seq} (Hst : r_lt s t) (Htu : r_le t u) : r_lt s u := s_lt_of_lt_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Hst Htu theorem r_add_lt_add_left (s t : reg_seq) (H : r_lt s t) (u : reg_seq) : r_lt (u + s) (u + t) := s_add_lt_add_left (reg_seq.is_reg s) (reg_seq.is_reg t) H (reg_seq.is_reg u) theorem r_add_lt_add_left_var (s t u : reg_seq) (H : r_lt s t) : r_lt (u + s) (u + t) := r_add_lt_add_left s t H u theorem r_zero_lt_one : r_lt r_zero r_one := s_zero_lt_one theorem r_le_of_lt_or_eq (s t : reg_seq) (H : r_lt s t ∨ requiv s t) : r_le s t := le_of_lt_or_equiv (reg_seq.is_reg s) (reg_seq.is_reg t) H ---------- -- earlier versions are sorried /-theorem r_le_iff_lt_or_equiv (s t : reg_seq) : r_le s t ↔ r_lt s t ∨ requiv s t := le_iff_lt_or_equiv (reg_seq.is_reg s) (reg_seq.is_reg t) theorem r_le_or_ge (s t : reg_seq) : r_le s t ∨ r_le t s := le_or_ge (reg_seq.is_reg s) (reg_seq.is_reg t)-/ ----------- end s open real namespace real definition lt (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_lt a b) s.r_lt_well_defined infix `<` := lt definition le (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_le a b) s.r_le_well_defined infix `≤` := le definition sep (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_sep a b) s.r_sep_well_defined infix `≢` : 50 := sep theorem le.refl (x : ℝ) : x ≤ x := quot.induction_on x (λ t, s.r_le.refl t) theorem le.trans (x y z : ℝ) : x ≤ y → y ≤ z → x ≤ z := quot.induction_on₃ x y z (λ s t u, s.r_le.trans) theorem eq_of_le_of_ge (x y : ℝ) : x ≤ y → y ≤ x → x = y := quot.induction_on₂ x y (λ s t Hst Hts, quot.sound (s.r_equiv_of_le_of_ge Hst Hts)) theorem lt_iff_le_and_sep (x y : ℝ) : x < y ↔ x ≤ y ∧ x ≢ y := quot.induction_on₂ x y (λ s t, s.r_lt_iff_le_and_sep s t) theorem add_le_add_of_le_right_var (x y z : ℝ) : x ≤ y → z + x ≤ z + y := quot.induction_on₃ x y z (λ s t u, s.r_add_le_add_of_le_right_var s t u) theorem add_le_add_of_le_right (x y : ℝ) : x ≤ y → ∀ z : ℝ, z + x ≤ z + y := take H z, add_le_add_of_le_right_var x y z H theorem mul_gt_zero_of_gt_zero (x y : ℝ) : zero < x → zero < y → zero < x * y := quot.induction_on₂ x y (λ s t, s.r_mul_pos_of_pos) theorem mul_ge_zero_of_ge_zero (x y : ℝ) : zero ≤ x → zero ≤ y → zero ≤ x * y := quot.induction_on₂ x y (λ s t, s.r_mul_nonneg_of_nonneg) theorem not_sep_self (x : ℝ) : ¬ x ≢ x := quot.induction_on x (λ s, s.r_not_sep_self s) theorem not_lt_self (x : ℝ) : ¬ x < x := quot.induction_on x (λ s, s.r_not_lt_self s) theorem le_of_lt (x y : ℝ) : x < y → x ≤ y := quot.induction_on₂ x y (λ s t H', s.r_le_of_lt H') theorem lt_of_le_of_lt (x y z : ℝ) : x ≤ y → y < z → x < z := quot.induction_on₃ x y z (λ s t u H H', s.r_lt_of_le_of_lt H H') theorem lt_of_lt_of_le (x y z : ℝ) : x < y → y ≤ z → x < z := quot.induction_on₃ x y z (λ s t u H H', s.r_lt_of_lt_of_le H H') theorem add_lt_add_left_var (x y z : ℝ) : x < y → z + x < z + y := quot.induction_on₃ x y z (λ s t u, s.r_add_lt_add_left_var s t u) theorem add_lt_add_left (x y : ℝ) : x < y → ∀ z : ℝ, z + x < z + y := take H z, add_lt_add_left_var x y z H theorem zero_lt_one : zero < one := s.r_zero_lt_one theorem le_of_lt_or_eq (x y : ℝ) : x < y ∨ x = y → x ≤ y := (quot.induction_on₂ x y (λ s t H, or.elim H (take H', begin apply s.r_le_of_lt_or_eq, apply or.inl H' end) (take H', begin apply s.r_le_of_lt_or_eq, apply (or.inr (quot.exact H')) end))) ---------- -- earlier versions are sorried /-theorem le_iff_lt_or_eq (x y : ℝ) : x ≤ y ↔ x < y ∨ x = y := iff.intro (quot.induction_on₂ x y (λ s t H, or.elim (iff.mp ((s.r_le_iff_lt_or_equiv s t)) H) (take H1, or.inl H1) (take H2, or.inr (quot.sound H2)))) (quot.induction_on₂ x y (λ s t H, or.elim H (take H', begin let H'' := iff.mp' (s.r_le_iff_lt_or_equiv s t), apply H'' (or.inl H') end) (take H', begin let H'' := iff.mp' (s.r_le_iff_lt_or_equiv s t), apply H'' (or.inr (quot.exact H')) end))) theorem le_or_ge (x y : ℝ) : x ≤ y ∨ y ≤ x := quot.induction_on₂ x y (λ s t, s.r_le_or_ge s t)-/ ------------- definition ordered_ring : algebra.ordered_ring ℝ := ⦃ algebra.ordered_ring, comm_ring, le_refl := le.refl, le_trans := le.trans, mul_pos := mul_gt_zero_of_gt_zero, mul_nonneg := mul_ge_zero_of_ge_zero, zero_ne_one := zero_ne_one, add_le_add_left := add_le_add_of_le_right, le_antisymm := eq_of_le_of_ge, lt_irrefl := not_lt_self, lt_of_le_of_lt := lt_of_le_of_lt, lt_of_lt_of_le := lt_of_lt_of_le, le_of_lt := le_of_lt, add_lt_add_left := add_lt_add_left ⦄ ----------------------------------- --- here is where classical logic comes in --theorem sep_is_eq (x y : ℝ) : x ≢ y = ¬ (x = y) := sorry /-theorem sep_is_eq (x y : ℝ) : x ≢ y = ¬ (x = y) := begin apply propext, apply iff.intro, intro Hsep, intro Heq, rewrite Heq at Hsep, apply absurd Hsep !not_sep_self, intro Hneq, end-/ /-definition linear_ordered_comm_ring : algebra.linear_ordered_comm_ring ℝ := ⦃ algebra.linear_ordered_comm_ring, ordered_ring, comm_ring, zero_lt_one := zero_lt_one, le_total := le_or_ge, le_iff_lt_or_eq := le_iff_lt_or_eq ⦄-/ end real