307 lines
12 KiB
Text
307 lines
12 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
homotopy groups of a pointed space
|
||
-/
|
||
|
||
import .trunc_group types.trunc .group_theory types.nat.hott
|
||
|
||
open nat eq pointed trunc is_trunc algebra group function equiv unit is_equiv nat
|
||
|
||
/- todo: prove more properties of homotopy groups using gtrunc and agtrunc -/
|
||
|
||
namespace eq
|
||
|
||
definition homotopy_group [reducible] [constructor] (n : ℕ) (A : Type*) : Set* :=
|
||
ptrunc 0 (Ω[n] A)
|
||
|
||
notation `π[`:95 n:0 `]`:0 := homotopy_group n
|
||
|
||
section
|
||
local attribute inf_group_loopn [instance]
|
||
definition group_homotopy_group [instance] [constructor] [reducible] (n : ℕ) [is_succ n]
|
||
(A : Type*) : group (π[n] A) :=
|
||
group_trunc (Ω[n] A)
|
||
end
|
||
|
||
definition group_homotopy_group2 [instance] (k : ℕ) (A : Type*) :
|
||
group (carrier (ptrunctype.to_pType (π[k + 1] A))) :=
|
||
group_homotopy_group (k+1) A
|
||
|
||
section
|
||
local attribute ab_inf_group_loopn [instance]
|
||
definition ab_group_homotopy_group [constructor] [reducible] (n : ℕ) [is_at_least_two n]
|
||
(A : Type*) : ab_group (π[n] A) :=
|
||
ab_group_trunc (Ω[n] A)
|
||
end
|
||
|
||
local attribute ab_group_homotopy_group [instance]
|
||
|
||
definition ghomotopy_group [constructor] (n : ℕ) [is_succ n] (A : Type*) : Group :=
|
||
gtrunc (Ωg[n] A)
|
||
|
||
definition aghomotopy_group [constructor] (n : ℕ) [is_at_least_two n] (A : Type*) : AbGroup :=
|
||
agtrunc (Ωag[n] A)
|
||
|
||
notation `πg[`:95 n:0 `]`:0 := ghomotopy_group n
|
||
notation `πag[`:95 n:0 `]`:0 := aghomotopy_group n
|
||
|
||
definition fundamental_group [constructor] (A : Type*) : Group := πg[1] A
|
||
|
||
notation `π₁` := fundamental_group
|
||
|
||
definition tr_mul_tr {n : ℕ} {A : Type*} (p q : Ω[n + 1] A) :
|
||
tr p *[πg[n+1] A] tr q = tr (p ⬝ q) :=
|
||
by reflexivity
|
||
|
||
definition tr_mul_tr' {n : ℕ} {A : Type*} (p q : Ω[succ n] A)
|
||
: tr p *[π[succ n] A] tr q = tr (p ⬝ q) :=
|
||
idp
|
||
|
||
definition homotopy_group_pequiv [constructor] (n : ℕ) {A B : Type*} (H : A ≃* B)
|
||
: π[n] A ≃* π[n] B :=
|
||
ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn n H)
|
||
|
||
definition homotopy_group_pequiv_loop_ptrunc [constructor] (k : ℕ) (A : Type*) :
|
||
π[k] A ≃* Ω[k] (ptrunc k A) :=
|
||
begin
|
||
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
|
||
exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end)
|
||
end
|
||
|
||
open trunc_index
|
||
definition homotopy_group_ptrunc_of_le [constructor] {k n : ℕ} (H : k ≤ n) (A : Type*) :
|
||
π[k] (ptrunc n A) ≃* π[k] A :=
|
||
calc
|
||
π[k] (ptrunc n A) ≃* Ω[k] (ptrunc k (ptrunc n A))
|
||
: homotopy_group_pequiv_loop_ptrunc k (ptrunc n A)
|
||
... ≃* Ω[k] (ptrunc k A)
|
||
: loopn_pequiv_loopn k (ptrunc_ptrunc_pequiv_left A (of_nat_le_of_nat H))
|
||
... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
|
||
|
||
definition homotopy_group_ptrunc [constructor] (k : ℕ) (A : Type*) :
|
||
π[k] (ptrunc k A) ≃* π[k] A :=
|
||
homotopy_group_ptrunc_of_le (le.refl k) A
|
||
|
||
theorem trivial_homotopy_of_is_set (n : ℕ) (A : Type*) [H : is_set A] : πg[n+1] A ≃g G0 :=
|
||
begin
|
||
apply trivial_group_of_is_contr,
|
||
apply is_trunc_trunc_of_is_trunc,
|
||
apply is_contr_loop_of_is_trunc (n+1),
|
||
exact is_trunc_succ_succ_of_is_set _ _ _
|
||
end
|
||
|
||
definition homotopy_group_succ_out (n : ℕ) (A : Type*) : π[n + 1] A = π₁ (Ω[n] A) := idp
|
||
|
||
definition homotopy_group_succ_in (n : ℕ) (A : Type*) : π[n + 1] A ≃* π[n] (Ω A) :=
|
||
ptrunc_pequiv_ptrunc 0 (loopn_succ_in n A)
|
||
|
||
definition ghomotopy_group_succ_out (n : ℕ) (A : Type*) : πg[n + 1] A = π₁ (Ω[n] A) := idp
|
||
|
||
definition homotopy_group_succ_in_con {n : ℕ} {A : Type*} (g h : πg[n + 2] A) :
|
||
homotopy_group_succ_in (succ n) A (g * h) =
|
||
homotopy_group_succ_in (succ n) A g * homotopy_group_succ_in (succ n) A h :=
|
||
begin
|
||
induction g with p, induction h with q, esimp,
|
||
apply ap tr, apply loopn_succ_in_con
|
||
end
|
||
|
||
definition ghomotopy_group_succ_in [constructor] (n : ℕ) (A : Type*) :
|
||
πg[n + 2] A ≃g πg[n + 1] (Ω A) :=
|
||
begin
|
||
fapply isomorphism_of_equiv,
|
||
{ exact homotopy_group_succ_in (succ n) A },
|
||
{ exact homotopy_group_succ_in_con },
|
||
end
|
||
|
||
definition is_contr_homotopy_group_of_is_contr (n : ℕ) (A : Type*) [is_contr A] : is_contr (π[n] A) :=
|
||
begin
|
||
apply is_trunc_trunc_of_is_trunc,
|
||
apply is_contr_loop_of_is_trunc,
|
||
exact is_trunc_of_is_contr _ _ _
|
||
end
|
||
|
||
definition homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B)
|
||
: π[n] A →* π[n] B :=
|
||
ptrunc_functor 0 (apn n f)
|
||
|
||
notation `π→[`:95 n:0 `]`:0 := homotopy_group_functor n
|
||
|
||
definition homotopy_group_functor_phomotopy [constructor] (n : ℕ) {A B : Type*} {f g : A →* B}
|
||
(p : f ~* g) : π→[n] f ~* π→[n] g :=
|
||
ptrunc_functor_phomotopy 0 (apn_phomotopy n p)
|
||
|
||
definition homotopy_group_functor_pid (n : ℕ) (A : Type*) : π→[n] (pid A) ~* pid (π[n] A) :=
|
||
ptrunc_functor_phomotopy 0 !apn_pid ⬝* !ptrunc_functor_pid
|
||
|
||
definition homotopy_group_functor_pcompose [constructor] (n : ℕ) {A B C : Type*} (g : B →* C)
|
||
(f : A →* B) : π→[n] (g ∘* f) ~* π→[n] g ∘* π→[n] f :=
|
||
ptrunc_functor_phomotopy 0 !apn_pcompose ⬝* !ptrunc_functor_pcompose
|
||
|
||
definition is_equiv_homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B)
|
||
(H : is_equiv f) : is_equiv (π→[n] f) :=
|
||
@(is_equiv_trunc_functor 0 _) (is_equiv_apn n f H)
|
||
|
||
definition homotopy_group_succ_in_natural (n : ℕ) {A B : Type*} (f : A →* B) :
|
||
psquare (homotopy_group_succ_in n A) (homotopy_group_succ_in n B)
|
||
(π→[n + 1] f) (π→[n] (Ω→ f)) :=
|
||
begin
|
||
exact ptrunc_functor_psquare 0 (loopn_succ_in_natural n f),
|
||
end
|
||
|
||
definition homotopy_group_succ_in_natural_unpointed (n : ℕ) {A B : Type*} (f : A →* B) :
|
||
hsquare (homotopy_group_succ_in n A) (homotopy_group_succ_in n B) (π→[n+1] f) (π→[n] (Ω→ f)) :=
|
||
homotopy_group_succ_in_natural n f
|
||
|
||
definition is_equiv_homotopy_group_functor_ap1 (n : ℕ) {A B : Type*} (f : A →* B)
|
||
[is_equiv (π→[n + 1] f)] : is_equiv (π→[n] (Ω→ f)) :=
|
||
have is_equiv (π→[n] (Ω→ f) ∘ homotopy_group_succ_in n A),
|
||
from is_equiv_of_equiv_of_homotopy (equiv.mk (π→[n+1] f) _ ⬝e homotopy_group_succ_in n B)
|
||
(homotopy_group_succ_in_natural n f)⁻¹*,
|
||
is_equiv.cancel_right (homotopy_group_succ_in n A) _
|
||
|
||
definition tinverse [constructor] {X : Type*} : π[1] X →* π[1] X :=
|
||
ptrunc_functor 0 (pinverse X)
|
||
|
||
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
|
||
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
|
||
|
||
definition ptrunc_functor_pinverse [constructor] {X : Type*}
|
||
: ptrunc_functor 0 (@pinverse X) ~* @tinverse X :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ reflexivity},
|
||
{ reflexivity}
|
||
end
|
||
|
||
/- maybe rename: ghomotopy_group_functor -/
|
||
definition homotopy_group_homomorphism [constructor] (n : ℕ) [H : is_succ n] {A B : Type*}
|
||
(f : A →* B) : πg[n] A →g πg[n] B :=
|
||
gtrunc_functor (Ωg→[n] f)
|
||
|
||
definition homotopy_group_functor_mul [constructor] (n : ℕ) {A B : Type*} (g : A →* B)
|
||
(p q : πg[n+1] A) :
|
||
(π→[n + 1] g) (p *[πg[n+1] A] q) = (π→[n+1] g) p *[πg[n+1] B] (π→[n + 1] g) q :=
|
||
begin
|
||
unfold [ghomotopy_group, homotopy_group] at *,
|
||
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ p, clear p, intro p,
|
||
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ q, clear q, intro q,
|
||
apply ap tr, apply apn_con
|
||
end
|
||
|
||
/- todo: rename πg→ -/
|
||
notation `π→g[`:95 n:0 `]`:0 := homotopy_group_homomorphism n
|
||
|
||
definition homotopy_group_homomorphism_pcompose (n : ℕ) [H : is_succ n] {A B C : Type*} (g : B →* C)
|
||
(f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f :=
|
||
begin
|
||
induction H with n, exact to_homotopy (homotopy_group_functor_pcompose (succ n) g f)
|
||
end
|
||
|
||
/- todo: use is_succ -/
|
||
definition homotopy_group_isomorphism_of_pequiv [constructor] (n : ℕ) {A B : Type*} (f : A ≃* B)
|
||
: πg[n+1] A ≃g πg[n+1] B :=
|
||
gtrunc_isomorphism_gtrunc (gloopn_isomorphism_gloopn (n+1) f)
|
||
|
||
definition homotopy_group_add (A : Type*) (n m : ℕ) :
|
||
πg[n+m+1] A ≃g πg[n+1] (Ω[m] A) :=
|
||
begin
|
||
revert A, induction m with m IH: intro A,
|
||
{ reflexivity},
|
||
{ esimp [loopn, nat.add], refine !ghomotopy_group_succ_in ⬝g _, refine !IH ⬝g _,
|
||
apply homotopy_group_isomorphism_of_pequiv,
|
||
exact !loopn_succ_in⁻¹ᵉ*}
|
||
end
|
||
|
||
theorem trivial_homotopy_add_of_is_set_loopn {n : ℕ} (m : ℕ) {A : Type*}
|
||
(H : is_set (Ω[n] A)) : πg[m+n+1] A ≃g G0 :=
|
||
!homotopy_group_add ⬝g !trivial_homotopy_of_is_set
|
||
|
||
theorem trivial_homotopy_le_of_is_set_loopn {n : ℕ} (m : ℕ) (H1 : n ≤ m) {A : Type*}
|
||
(H2 : is_set (Ω[n] A)) : πg[m+1] A ≃g G0 :=
|
||
obtain (k : ℕ) (p : n + k = m), from le.elim H1,
|
||
isomorphism_of_eq (ap (λx, πg[x+1] A) (p⁻¹ ⬝ add.comm n k)) ⬝g
|
||
trivial_homotopy_add_of_is_set_loopn k H2
|
||
|
||
definition homotopy_group_pequiv_loop_ptrunc_con {k : ℕ} {A : Type*} (p q : πg[k +1] A) :
|
||
homotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) =
|
||
homotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝
|
||
homotopy_group_pequiv_loop_ptrunc (succ k) A q :=
|
||
begin
|
||
refine _ ⬝ !loopn_pequiv_loopn_con,
|
||
exact ap (loopn_pequiv_loopn _ _) !loopn_ptrunc_pequiv_inv_con
|
||
end
|
||
|
||
definition homotopy_group_pequiv_loop_ptrunc_inv_con {k : ℕ} {A : Type*}
|
||
(p q : Ω[succ k] (ptrunc (succ k) A)) :
|
||
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) =
|
||
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p *
|
||
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q :=
|
||
inv_preserve_binary (homotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat
|
||
(@homotopy_group_pequiv_loop_ptrunc_con k A) p q
|
||
|
||
definition ghomotopy_group_ptrunc_of_le [constructor] {k n : ℕ} (H : k ≤ n) [Hk : is_succ k] (A : Type*) :
|
||
πg[k] (ptrunc n A) ≃g πg[k] A :=
|
||
begin
|
||
fapply isomorphism_of_equiv,
|
||
{ exact homotopy_group_ptrunc_of_le H A},
|
||
{ intro g₁ g₂, induction Hk with k,
|
||
refine _ ⬝ !homotopy_group_pequiv_loop_ptrunc_inv_con,
|
||
apply ap ((homotopy_group_pequiv_loop_ptrunc (k+1) A)⁻¹ᵉ*),
|
||
refine _ ⬝ !loopn_pequiv_loopn_con ,
|
||
apply ap (loopn_pequiv_loopn (k+1) _),
|
||
apply homotopy_group_pequiv_loop_ptrunc_con}
|
||
end
|
||
|
||
lemma ghomotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*}
|
||
(n k : ℕ) (H : n+1 ≤[ℕ] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B :=
|
||
(ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g
|
||
homotopy_group_isomorphism_of_pequiv n f ⬝g
|
||
ghomotopy_group_ptrunc_of_le H B
|
||
|
||
definition fundamental_group_isomorphism {X : Type*} {G : Group}
|
||
(e : Ω X ≃ G) (hom_e : Πp q, e (p ⬝ q) = e p * e q) : π₁ X ≃g G :=
|
||
isomorphism_of_equiv (trunc_equiv_trunc 0 e ⬝e (trunc_equiv 0 G))
|
||
begin intro p q, induction p with p, induction q with q, exact hom_e p q end
|
||
|
||
definition ghomotopy_group_ptrunc [constructor] (k : ℕ) [is_succ k] (A : Type*) :
|
||
πg[k] (ptrunc k A) ≃g πg[k] A :=
|
||
ghomotopy_group_ptrunc_of_le (le.refl k) A
|
||
|
||
section psquare
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
|
||
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||
|
||
definition homotopy_group_functor_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) :=
|
||
!homotopy_group_functor_pcompose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝*
|
||
!homotopy_group_functor_pcompose
|
||
|
||
definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n]
|
||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) :=
|
||
begin
|
||
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
|
||
end
|
||
|
||
end psquare
|
||
|
||
/- some homomorphisms -/
|
||
|
||
-- definition is_homomorphism_cast_loopn_succ_eq_in (n : ℕ) {A : Type*} :
|
||
-- is_homomorphism (loopn_succ_in A (succ n) : πg[n+1+1] A → πg[n+1] (Ω A)) :=
|
||
-- begin
|
||
-- intro g h, induction g with g, induction h with h,
|
||
-- xrewrite [tr_mul_tr, - + fn_cast_eq_cast_fn _ (λn, tr), tr_mul_tr, ↑cast, -tr_compose,
|
||
-- loopn_succ_eq_in_concat, - + tr_compose],
|
||
-- end
|
||
|
||
definition is_mul_hom_inverse (n : ℕ) (A : Type*)
|
||
: is_mul_hom (λp, p⁻¹ : (πag[n+2] A) → (πag[n+2] A)) :=
|
||
begin
|
||
intro g h, exact ap inv (mul.comm g h) ⬝ mul_inv h g,
|
||
end
|
||
|
||
end eq
|