lean2/hott/init/equiv.hlean
2018-09-11 19:25:32 +02:00

544 lines
23 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
prelude
import .path .function
open eq function lift
/- Equivalences -/
-- This is our definition of equivalence. In the HoTT-book it's called
-- ihae (half-adjoint equivalence).
structure is_equiv [class] {A B : Type} (f : A → B) :=
mk' ::
(inv : B → A)
(right_inv : Πb, f (inv b) = b)
(left_inv : Πa, inv (f a) = a)
(adj : Πx, right_inv (f x) = ap f (left_inv x))
attribute is_equiv.inv [reducible]
-- A more bundled version of equivalence
structure equiv (A B : Type) :=
(to_fun : A → B)
(to_is_equiv : is_equiv to_fun)
namespace is_equiv
/- Some instances and closure properties of equivalences -/
postfix ⁻¹ := inv
/- a second notation for the inverse, which is not overloaded -/
postfix [parsing_only] `⁻¹ᶠ`:std.prec.max_plus := inv
section
variables {A B C : Type} (g : B → C) (f : A → B) {f' : A → B}
-- The variant of mk' where f is explicit.
protected definition mk [constructor] := @is_equiv.mk' A B f
-- The identity function is an equivalence.
definition is_equiv_id [instance] [constructor] (A : Type) : (is_equiv (id : A → A)) :=
is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp)
-- The composition of two equivalences is, again, an equivalence.
definition is_equiv_compose [constructor] (Hf : is_equiv f) (Hg : is_equiv g)
: is_equiv (g ∘ f) :=
is_equiv.mk (g ∘ f) (f⁻¹ᶠ ∘ g⁻¹ᶠ)
abstract (λc, ap g (right_inv f (g⁻¹ᶠ c)) ⬝ right_inv g c) end
abstract (λa, ap (inv f) (left_inv g (f a)) ⬝ left_inv f a) end
abstract (λa, (whisker_left _ (adj g (f a))) ⬝
(ap_con g _ _)⁻¹ ⬝
ap02 g ((ap_con_eq_con (right_inv f) (left_inv g (f a)))⁻¹ ⬝
(ap_compose f (inv f) _ ◾ adj f a) ⬝
(ap_con f _ _)⁻¹
) ⬝
(ap_compose g f _)⁻¹) end
-- Any function equal to an equivalence is an equivlance as well.
variable {f}
definition is_equiv_eq_closed [Hf : is_equiv f] (Heq : f = f') : is_equiv f' :=
eq.rec_on Heq Hf
end
section
parameters {A B : Type} (f : A → B) (g : B → A)
(ret : Πb, f (g b) = b) (sec : Πa, g (f a) = a)
definition adjointify_left_inv' [unfold_full] (a : A) : g (f a) = a :=
ap g (ap f (inverse (sec a))) ⬝ ap g (ret (f a)) ⬝ sec a
theorem adjointify_adj' (a : A) : ret (f a) = ap f (adjointify_left_inv' a) :=
let fgretrfa := ap f (ap g (ret (f a))) in
let fgfinvsect := ap f (ap g (ap f (sec a)⁻¹)) in
let fgfa := f (g (f a)) in
let retrfa := ret (f a) in
have eq1 : ap f (sec a) = _,
from calc ap f (sec a)
= idp ⬝ ap f (sec a) : by rewrite idp_con
... = (ret (f a) ⬝ (ret (f a))⁻¹) ⬝ ap f (sec a) : by rewrite con.right_inv
... = ((ret fgfa)⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : by rewrite con_ap_eq_con
... = ((ret fgfa)⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite ap_compose
... = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite con.assoc,
have eq2 : ap f (sec a) ⬝ idp = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)),
from !con_idp ⬝ eq1,
have eq3 : idp = _,
from calc idp
= (ap f (sec a))⁻¹ ⬝ ((ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a))) : eq_inv_con_of_con_eq eq2
... = ((ap f (sec a))⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite con.assoc'
... = (ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite ap_inv
... = ((ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite con.assoc'
... = ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f (sec a)⁻¹)) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite con_ap_eq_con
... = ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite ap_compose
... = (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sec a) : by rewrite con.assoc'
... = retrfa⁻¹ ⬝ ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a) : by rewrite ap_con
... = retrfa⁻¹ ⬝ (ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a)) : by rewrite con.assoc'
... = retrfa⁻¹ ⬝ ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a) : by rewrite -ap_con,
show ret (f a) = ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a),
from eq_of_idp_eq_inv_con eq3
definition adjointify [constructor] : is_equiv f :=
is_equiv.mk f g ret adjointify_left_inv' adjointify_adj'
end
-- Any function pointwise equal to an equivalence is an equivalence as well.
definition homotopy_closed [constructor] {A B : Type} (f : A → B) {f' : A → B} (Hty : f ~ f')
(Hf : is_equiv f) : is_equiv f' :=
adjointify f'
(inv f)
(λ b, (Hty (inv f b))⁻¹ ⬝ right_inv f b)
(λ a, (ap (inv f) (Hty a))⁻¹ ⬝ left_inv f a)
definition inv_homotopy_closed [constructor] {A B : Type} {f : A → B} (f' : B → A)
(Hf : is_equiv f) (Hty : f⁻¹ᶠ ~ f') : is_equiv f :=
adjointify f
f'
(λ b, ap f !Hty⁻¹ᵖ ⬝ right_inv f b)
(λ a, !Hty⁻¹ᵖ ⬝ left_inv f a)
definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g)
: f⁻¹ᶠ ~ g⁻¹ᶠ :=
λb, (left_inv g (f⁻¹ᶠ b))⁻¹ ⬝ ap g⁻¹ᶠ ((p (f⁻¹ᶠ b))⁻¹ ⬝ right_inv f b)
definition is_equiv_up [instance] [constructor] (A : Type)
: is_equiv (up : A → lift A) :=
adjointify up down (λa, by induction a;reflexivity) (λa, idp)
section
variables {A B C : Type} (f : A → B) {f' : A → B} [Hf : is_equiv f] (g : B → C)
include Hf
-- The function equiv_rect says that given an equivalence f : A → B,
-- and a hypothesis from B, one may always assume that the hypothesis
-- is in the image of e.
-- In fibrational terms, if we have a fibration over B which has a section
-- once pulled back along an equivalence f : A → B, then it has a section
-- over all of B.
definition is_equiv_rect (P : B → Type) (g : Πa, P (f a)) (b : B) : P b :=
right_inv f b ▸ g (f⁻¹ᶠ b)
definition is_equiv_rect' (P : A → B → Type) (g : Πb, P (f⁻¹ᶠ b) b) (a : A) : P a (f a) :=
left_inv f a ▸ g (f a)
definition is_equiv_rect_comp (P : B → Type)
(df : Π (x : A), P (f x)) (x : A) : is_equiv_rect f P df (f x) = df x :=
calc
is_equiv_rect f P df (f x)
= right_inv f (f x) ▸ df (f⁻¹ᶠ (f x)) : by esimp
... = ap f (left_inv f x) ▸ df (f⁻¹ᶠ (f x)) : by rewrite -adj
... = left_inv f x ▸ df (f⁻¹ᶠ (f x)) : by rewrite -tr_compose
... = df x : by rewrite (apdt df (left_inv f x))
theorem adj_inv (b : B) : left_inv f (f⁻¹ᶠ b) = ap f⁻¹ᶠ (right_inv f b) :=
is_equiv_rect f _
(λa, eq.cancel_right (left_inv f (id a))
(whisker_left _ !ap_id⁻¹ ⬝ (ap_con_eq_con_ap (left_inv f) (left_inv f a))⁻¹) ⬝
!ap_compose ⬝ ap02 f⁻¹ᶠ (adj f a)⁻¹)
b
--The inverse of an equivalence is, again, an equivalence.
definition is_equiv_inv [instance] [constructor] [priority 500] : is_equiv f⁻¹ᶠ :=
is_equiv.mk f⁻¹ᶠ f (left_inv f) (right_inv f) (adj_inv f)
-- The 2-out-of-3 properties
definition cancel_right (g : B → C) [Hgf : is_equiv (g ∘ f)] : (is_equiv g) :=
homotopy_closed _ (λb, ap g (right_inv f b)) (is_equiv_compose (g ∘ f) f⁻¹ᶠ _ _)
definition cancel_left (g : C → A) [Hgf : is_equiv (f ∘ g)] : (is_equiv g) :=
homotopy_closed _ (λa, left_inv f (g a)) (is_equiv_compose f⁻¹ᶠ (f ∘ g) _ _)
definition inj' [unfold 4] {x y : A} (q : f x = f y) : x = y :=
(left_inv f x)⁻¹ ⬝ ap f⁻¹ᶠ q ⬝ left_inv f y
definition ap_inj' {x y : A} (q : f x = f y) : ap f (inj' f q) = q :=
!ap_con ⬝ whisker_right _ !ap_con
⬝ ((!ap_inv ⬝ inverse2 (adj f _)⁻¹)
◾ (inverse (ap_compose f f⁻¹ᶠ _))
◾ (adj f _)⁻¹)
⬝ con_ap_con_eq_con_con (right_inv f) _ _
⬝ whisker_right _ !con.left_inv
⬝ !idp_con
definition inj'_ap {x y : A} (q : x = y) : inj' f (ap f q) = q :=
by induction q; apply con.left_inv
definition is_equiv_ap [instance] [constructor] (x y : A) : is_equiv (ap f : x = y → f x = f y) :=
adjointify
(ap f)
(inj' f)
(ap_inj' f)
(inj'_ap f)
end
section
variables {A B C : Type} {f : A → B} [Hf : is_equiv f]
include Hf
section rewrite_rules
variables {a : A} {b : B}
definition eq_of_eq_inv (p : a = f⁻¹ᶠ b) : f a = b :=
ap f p ⬝ right_inv f b
definition eq_of_inv_eq (p : f⁻¹ᶠ b = a) : b = f a :=
(eq_of_eq_inv p⁻¹)⁻¹
definition inv_eq_of_eq (p : b = f a) : f⁻¹ᶠ b = a :=
ap f⁻¹ᶠ p ⬝ left_inv f a
definition eq_inv_of_eq (p : f a = b) : a = f⁻¹ᶠ b :=
(inv_eq_of_eq p⁻¹)⁻¹
end rewrite_rules
variable (f)
section pre_compose
variables (α : A → C) (β : B → C)
definition homotopy_of_homotopy_inv_pre (p : β ~ α ∘ f⁻¹ᶠ) : β ∘ f ~ α :=
λ a, p (f a) ⬝ ap α (left_inv f a)
definition homotopy_of_inv_homotopy_pre (p : α ∘ f⁻¹ᶠ ~ β) : α ~ β ∘ f :=
λ a, (ap α (left_inv f a))⁻¹ ⬝ p (f a)
definition inv_homotopy_of_homotopy_pre (p : α ~ β ∘ f) : α ∘ f⁻¹ᶠ ~ β :=
λ b, p (f⁻¹ᶠ b) ⬝ ap β (right_inv f b)
definition homotopy_inv_of_homotopy_pre (p : β ∘ f ~ α) : β ~ α ∘ f⁻¹ᶠ :=
λ b, (ap β (right_inv f b))⁻¹ ⬝ p (f⁻¹ᶠ b)
end pre_compose
section post_compose
variables (α : C → A) (β : C → B)
definition homotopy_of_homotopy_inv_post (p : α ~ f⁻¹ᶠ ∘ β) : f ∘ α ~ β :=
λ c, ap f (p c) ⬝ (right_inv f (β c))
definition homotopy_of_inv_homotopy_post (p : f⁻¹ᶠ ∘ β ~ α) : β ~ f ∘ α :=
λ c, (right_inv f (β c))⁻¹ ⬝ ap f (p c)
definition inv_homotopy_of_homotopy_post (p : β ~ f ∘ α) : f⁻¹ᶠ ∘ β ~ α :=
λ c, ap f⁻¹ᶠ (p c) ⬝ (left_inv f (α c))
definition homotopy_inv_of_homotopy_post (p : f ∘ α ~ β) : α ~ f⁻¹ᶠ ∘ β :=
λ c, (left_inv f (α c))⁻¹ ⬝ ap f⁻¹ᶠ (p c)
end post_compose
end
--Transporting is an equivalence
definition is_equiv_tr [constructor] {A : Type} (P : A → Type) {x y : A}
(p : x = y) : (is_equiv (transport P p)) :=
is_equiv.mk _ (transport P p⁻¹) (tr_inv_tr p) (inv_tr_tr p) (tr_inv_tr_lemma p)
-- a version where the transport is a cast. Note: A and B live in the same universe here.
definition is_equiv_cast [constructor] {A B : Type} (H : A = B) : is_equiv (cast H) :=
is_equiv_tr (λX, X) H
section
variables {A : Type} {B C : A → Type} (f : Π{a}, B a → C a) [H : Πa, is_equiv (@f a)]
{g : A → A} {g' : A → A} (h : Π{a}, B (g' a) → B (g a)) (h' : Π{a}, C (g' a) → C (g a))
include H
definition inv_commute' (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A}
(c : C (g' a)) : f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c) :=
inj' f (right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ᶠ c))⁻¹)
definition fun_commute_of_inv_commute' (p : Π⦃a : A⦄ (c : C (g' a)), f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c))
{a : A} (b : B (g' a)) : f (h b) = h' (f b) :=
inj' f⁻¹ᶠ (left_inv f (h b) ⬝ ap h (left_inv f b)⁻¹ ⬝ (p (f b))⁻¹)
definition ap_inv_commute' (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A}
(c : C (g' a)) : ap f (inv_commute' @f @h @h' p c)
= right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ᶠ c))⁻¹ :=
!ap_inj'
-- inv_commute'_fn is in types.equiv
end
-- This is inv_commute' for A ≡ unit
definition inv_commute1' {B C : Type} (f : B → C) [is_equiv f] (h : B → B) (h' : C → C)
(p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c) :=
inj' f (right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ᶠ c))⁻¹)
end is_equiv
open is_equiv
namespace eq
local attribute is_equiv_tr [instance]
definition tr_inv_fn {A : Type} {B : A → Type} {a a' : A} (p : a = a') :
transport B p⁻¹ = (transport B p)⁻¹ := idp
definition tr_inv {A : Type} {B : A → Type} {a a' : A} (p : a = a') (b : B a') :
p⁻¹ ▸ b = (transport B p)⁻¹ b := idp
definition cast_inv_fn {A B : Type} (p : A = B) : cast p⁻¹ = (cast p)⁻¹ := idp
definition cast_inv {A B : Type} (p : A = B) (b : B) : cast p⁻¹ b = (cast p)⁻¹ b := idp
end eq
infix ` ≃ `:25 := equiv
attribute equiv.to_is_equiv [instance]
namespace equiv
attribute to_fun [coercion]
section
variables {A B C : Type}
protected definition MK [reducible] [constructor] (f : A → B) (g : B → A)
(right_inv : Πb, f (g b) = b) (left_inv : Πa, g (f a) = a) : A ≃ B :=
equiv.mk f (adjointify f g right_inv left_inv)
definition to_inv [reducible] [unfold 3] (f : A ≃ B) : B → A := f⁻¹ᶠ
definition to_right_inv [reducible] [unfold 3] (f : A ≃ B) (b : B) : f (f⁻¹ᶠ b) = b :=
right_inv f b
definition to_left_inv [reducible] [unfold 3] (f : A ≃ B) (a : A) : f⁻¹ᶠ (f a) = a :=
left_inv f a
protected definition rfl [refl] [constructor] : A ≃ A :=
equiv.mk id !is_equiv_id
protected definition refl [constructor] [reducible] (A : Type) : A ≃ A :=
@equiv.rfl A
protected definition symm [symm] [constructor] (f : A ≃ B) : B ≃ A :=
equiv.mk f⁻¹ᶠ !is_equiv_inv
protected definition trans [trans] [constructor] (f : A ≃ B) (g : B ≃ C) : A ≃ C :=
equiv.mk (g ∘ f) (is_equiv_compose g f _ _)
infixl ` ⬝e `:75 := equiv.trans
postfix `⁻¹ᵉ`:(max + 1) := equiv.symm
-- notation for inverse which is not overloaded
abbreviation erfl [constructor] := @equiv.rfl
definition to_inv_trans [reducible] [unfold_full] (f : A ≃ B) (g : B ≃ C)
: to_inv (f ⬝e g) = to_fun (g⁻¹ᵉ ⬝e f⁻¹ᵉ) :=
idp
definition equiv_change_fun [constructor] (f : A ≃ B) {f' : A → B} (Heq : f ~ f') : A ≃ B :=
equiv.mk f' (is_equiv.homotopy_closed f Heq _)
definition equiv_change_inv [constructor] (f : A ≃ B) {f' : B → A} (Heq : f⁻¹ᶠ ~ f')
: A ≃ B :=
equiv.mk f (inv_homotopy_closed _ _ Heq)
definition eq_equiv_fn_eq_of_is_equiv [constructor] (f : A → B) [H : is_equiv f] (a b : A) :
(a = b) ≃ (f a = f b) :=
equiv.mk (ap f) !is_equiv_ap
definition eq_equiv_fn_eq [constructor] (f : A ≃ B) (a b : A) : (a = b) ≃ (f a = f b) :=
equiv.mk (ap f) !is_equiv_ap
definition equiv_ap [constructor] (P : A → Type) {a b : A} (p : a = b) : P a ≃ P b :=
equiv.mk (transport P p) !is_equiv_tr
definition equiv_of_eq [constructor] {A B : Type} (p : A = B) : A ≃ B :=
equiv.mk (cast p) !is_equiv_tr
definition equiv_of_eq_refl [reducible] [unfold_full] (A : Type)
: equiv_of_eq (refl A) = equiv.refl A :=
idp
definition inj [unfold 3] (f : A ≃ B) {x y : A} (q : f x = f y) : x = y :=
(left_inv f x)⁻¹ ⬝ ap f⁻¹ᶠ q ⬝ left_inv f y
definition inj_inv [unfold 3] (f : A ≃ B) {x y : B} (q : f⁻¹ᶠ x = f⁻¹ᶠ y) : x = y :=
(right_inv f x)⁻¹ ⬝ ap f q ⬝ right_inv f y
definition ap_inj (f : A ≃ B) {x y : A} (q : f x = f y) : ap f (inj' f q) = q :=
ap_inj' f q
definition inj_ap (f : A ≃ B) {x y : A} (q : x = y) : inj' f (ap f q) = q :=
inj'_ap f q
definition to_inv_homotopy_inv {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ :=
inv_homotopy_inv p
--we need this theorem for the funext_of_ua proof
theorem inv_eq {A B : Type} (eqf eqg : A ≃ B) (p : eqf = eqg) : (to_fun eqf)⁻¹ = (to_fun eqg)⁻¹ :=
eq.rec_on p idp
definition equiv_of_equiv_of_eq [trans] {A B C : Type} (p : A = B) (q : B ≃ C) : A ≃ C :=
equiv_of_eq p ⬝e q
definition equiv_of_eq_of_equiv [trans] {A B C : Type} (p : A ≃ B) (q : B = C) : A ≃ C :=
p ⬝e equiv_of_eq q
definition equiv_lift [constructor] (A : Type) : A ≃ lift A := equiv.mk up _
definition equiv_rect (f : A ≃ B) (P : B → Type) (g : Πa, P (f a)) (b : B) : P b :=
right_inv f b ▸ g (f⁻¹ᶠ b)
definition equiv_rect' (f : A ≃ B) (P : A → B → Type) (g : Πb, P (f⁻¹ᶠ b) b) (a : A) : P a (f a) :=
left_inv f a ▸ g (f a)
definition equiv_rect_comp (f : A ≃ B) (P : B → Type)
(df : Π (x : A), P (f x)) (x : A) : equiv_rect f P df (f x) = df x :=
calc
equiv_rect f P df (f x)
= right_inv f (f x) ▸ df (f⁻¹ᶠ (f x)) : by esimp
... = ap f (left_inv f x) ▸ df (f⁻¹ᶠ (f x)) : by rewrite -adj
... = left_inv f x ▸ df (f⁻¹ᶠ (f x)) : by rewrite -tr_compose
... = df x : by rewrite (apdt df (left_inv f x))
end
definition rec_eq_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a')
{a a' : A} (Q : P a a' → Type) (H : Π(q : a = a'), Q (e a a' q)) :
Π(p : P a a'), Q p :=
equiv_rect (e a a') Q H
definition rec_idp_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) ⦃a' : A⦄ (p : P a a') :
Q a' p :=
rec_eq_of_equiv e _ begin intro q, induction q, induction s, exact H end p
definition rec_idp_of_equiv_idp {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) :
rec_idp_of_equiv e r s Q H r = H :=
begin
induction s, refine !is_equiv_rect_comp ⬝ _, reflexivity
end
section
variables {A B : Type} (f : A ≃ B) {a : A} {b : B}
definition to_eq_of_eq_inv (p : a = f⁻¹ᶠ b) : f a = b :=
ap f p ⬝ right_inv f b
definition to_eq_of_inv_eq (p : f⁻¹ᶠ b = a) : b = f a :=
(eq_of_eq_inv p⁻¹)⁻¹
definition to_inv_eq_of_eq (p : b = f a) : f⁻¹ᶠ b = a :=
ap f⁻¹ᶠ p ⬝ left_inv f a
definition to_eq_inv_of_eq (p : f a = b) : a = f⁻¹ᶠ b :=
(inv_eq_of_eq p⁻¹)⁻¹
end
section
variables {A : Type} {B C : A → Type} (f : Π{a}, B a ≃ C a)
{g : A → A} {g' : A → A} (h : Π{a}, B (g' a) → B (g a)) (h' : Π{a}, C (g' a) → C (g a))
definition inv_commute (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A}
(c : C (g' a)) : f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c) :=
inv_commute' @f @h @h' p c
definition fun_commute_of_inv_commute (p : Π⦃a : A⦄ (c : C (g' a)), f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c))
{a : A} (b : B (g' a)) : f (h b) = h' (f b) :=
fun_commute_of_inv_commute' @f @h @h' p b
definition inv_commute1 {B C : Type} (f : B ≃ C) (h : B → B) (h' : C → C)
(p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ᶠ (h' c) = h (f⁻¹ᶠ c) :=
inv_commute1' (to_fun f) h h' p c
end
infixl ` ⬝pe `:75 := equiv_of_equiv_of_eq
infixl ` ⬝ep `:75 := equiv_of_eq_of_equiv
end equiv
open equiv
namespace is_equiv
definition is_equiv_of_equiv_of_homotopy [constructor] {A B : Type} (f : A ≃ B)
{f' : A → B} (Hty : f ~ f') : is_equiv f' :=
homotopy_closed f Hty _
end is_equiv
export [unfold] equiv
export [unfold] is_equiv
/- properties about squares of functions -/
namespace eq
section hsquare
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
definition hsquare [reducible] (f₁₀ : A₀₀ → A₂₀) (f₁₂ : A₀₂ → A₂₂)
(f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) : Type :=
f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁
definition hsquare_of_homotopy (p : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
p
definition homotopy_of_hsquare (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁ :=
p
definition homotopy_top_of_hsquare {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
homotopy_inv_of_homotopy_post _ _ _ p
definition homotopy_top_of_hsquare' [is_equiv f₂₁] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
homotopy_inv_of_homotopy_post _ _ _ p
definition hhconcat [unfold_full] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) :
hsquare (f₃₀ ∘ f₁₀) (f₃₂ ∘ f₁₂) f₀₁ f₄₁ :=
hwhisker_right f₁₀ q ⬝hty hwhisker_left f₃₂ p
definition hvconcat [unfold_full] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₁₂ f₁₄ f₀₃ f₂₃) :
hsquare f₁₀ f₁₄ (f₀₃ ∘ f₀₁) (f₂₃ ∘ f₂₁) :=
hwhisker_left f₂₃ p ⬝hty hwhisker_right f₀₁ q
definition hhinverse {f₁₀ : A₀₀ ≃ A₂₀} {f₁₂ : A₀₂ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
hsquare f₁₀⁻¹ᵉ f₁₂⁻¹ᵉ f₂₁ f₀₁ :=
λb, eq_inv_of_eq ((p (f₁₀⁻¹ᵉ b))⁻¹ ⬝ ap f₂₁ (to_right_inv f₁₀ b))
definition hvinverse {f₀₁ : A₀₀ ≃ A₀₂} {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
hsquare f₁₂ f₁₀ f₀₁⁻¹ᵉ f₂₁⁻¹ᵉ :=
λa, inv_eq_of_eq (p (f₀₁⁻¹ᵉ a) ⬝ ap f₁₂ (to_right_inv f₀₁ a))⁻¹
infix ` ⬝htyh `:73 := hhconcat
infix ` ⬝htyv `:73 := hvconcat
postfix `⁻¹ʰᵗʸʰ`:(max+1) := hhinverse
postfix `⁻¹ʰᵗʸᵛ`:(max+1) := hvinverse
definition rfl_hhconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyh q ~ q :=
homotopy.rfl
definition hhconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyh homotopy.rfl ~ q :=
λx, !idp_con ⬝ ap_id (q x)
definition rfl_hvconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyv q ~ q :=
λx, !idp_con
definition hvconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyv homotopy.rfl ~ q :=
λx, !ap_id
end hsquare
end eq