lean2/library/algebra/ring_bigops.lean
Floris van Doorn e5d5ef9d55 feat(hott/library): various changes and additions.
Most notably:
Give le.refl the attribute [refl]. This simplifies tactic proofs in various places.
Redefine the order of trunc_index, and instantiate it as weak order.
Add more about pointed equivalences.
2016-03-03 10:13:20 -08:00

183 lines
5.9 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Properties of finite sums and products in various structures, including ordered rings and fields.
There are two versions of every theorem: one for finsets, and one for finite sets.
-/
import .group_bigops .ordered_field
variables {A B : Type}
variable [deceqA : decidable_eq A]
/-
-- finset versions
-/
namespace finset
section comm_semiring
variable [csB : comm_semiring B]
include deceqA csB
proposition mul_Sum (f : A → B) {s : finset A} (b : B) :
b * (∑ x ∈ s, f x) = ∑ x ∈ s, b * f x :=
begin
induction s with a s ans ih,
{rewrite [+Sum_empty, mul_zero]},
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem (λ x, b * f x) ans],
rewrite [-ih, left_distrib]
end
proposition Sum_mul (f : A → B) {s : finset A} (b : B) :
(∑ x ∈ s, f x) * b = ∑ x ∈ s, f x * b :=
by rewrite [mul.comm _ b, mul_Sum]; apply Sum_ext; intros; apply mul.comm
proposition Prod_eq_zero (f : A → B) {s : finset A} {a : A} (H : a ∈ s) (fa0 : f a = 0) :
(∏ x ∈ s, f x) = 0 :=
begin
induction s with b s bns ih,
{exact absurd H !not_mem_empty},
rewrite [Prod_insert_of_not_mem f bns],
have a = b a ∈ s, from eq_or_mem_of_mem_insert H,
cases this with aeqb ains,
{rewrite [-aeqb, fa0, zero_mul]},
rewrite [ih ains, mul_zero]
end
end comm_semiring
section ordered_comm_group
variable [ocgB : ordered_comm_group B]
include deceqA ocgB
proposition Sum_le_Sum (f g : A → B) {s : finset A} (H: ∀ x, x ∈ s → f x ≤ g x) :
(∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x) :=
begin
induction s with a s ans ih,
{exact le.refl _},
have H1 : f a ≤ g a, from H _ !mem_insert,
have H2 : (∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x), from ih (forall_of_forall_insert H),
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem g ans],
apply add_le_add H1 H2
end
proposition Sum_nonneg (f : A → B) {s : finset A} (H : ∀x, x ∈ s → f x ≥ 0) :
(∑ x ∈ s, f x) ≥ 0 :=
calc
0 = (∑ x ∈ s, 0) : Sum_zero
... ≤ (∑ x ∈ s, f x) : Sum_le_Sum (λ x, 0) f H
proposition Sum_nonpos (f : A → B) {s : finset A} (H : ∀x, x ∈ s → f x ≤ 0) :
(∑ x ∈ s, f x) ≤ 0 :=
calc
0 = (∑ x ∈ s, 0) : Sum_zero
... ≥ (∑ x ∈ s, f x) : Sum_le_Sum f (λ x, 0) H
end ordered_comm_group
section decidable_linear_ordered_comm_group
variable [dloocgB : decidable_linear_ordered_comm_group B]
include deceqA dloocgB
proposition abs_Sum_le (f : A → B) (s : finset A) : abs (∑ x ∈ s, f x) ≤ (∑ x ∈ s, abs (f x)) :=
begin
induction s with a s ans ih,
{rewrite [+Sum_empty, abs_zero]},
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem _ ans],
apply le.trans,
apply abs_add_le_abs_add_abs,
apply add_le_add_left ih
end
end decidable_linear_ordered_comm_group
end finset
/-
-- set versions
-/
namespace set
open classical
section comm_semiring
variable [csB : comm_semiring B]
include csB
proposition mul_Sum (f : A → B) {s : set A} (b : B) :
b * (∑ x ∈ s, f x) = ∑ x ∈ s, b * f x :=
begin
cases (em (finite s)) with fins nfins,
rotate 1,
{rewrite [+Sum_of_not_finite nfins, mul_zero]},
induction fins with a s fins ans ih,
{rewrite [+Sum_empty, mul_zero]},
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem (λ x, b * f x) ans],
rewrite [-ih, left_distrib]
end
proposition Sum_mul (f : A → B) {s : set A} (b : B) :
(∑ x ∈ s, f x) * b = ∑ x ∈ s, f x * b :=
by rewrite [mul.comm _ b, mul_Sum]; apply Sum_ext; intros; apply mul.comm
proposition Prod_eq_zero (f : A → B) {s : set A} [fins : finite s] {a : A} (H : a ∈ s) (fa0 : f a = 0) :
(∏ x ∈ s, f x) = 0 :=
begin
induction fins with b s fins bns ih,
{exact absurd H !not_mem_empty},
rewrite [Prod_insert_of_not_mem f bns],
have a = b a ∈ s, from eq_or_mem_of_mem_insert H,
cases this with aeqb ains,
{rewrite [-aeqb, fa0, zero_mul]},
rewrite [ih ains, mul_zero]
end
end comm_semiring
section ordered_comm_group
variable [ocgB : ordered_comm_group B]
include ocgB
proposition Sum_le_Sum (f g : A → B) {s : set A} (H: ∀₀ x ∈ s, f x ≤ g x) :
(∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x) :=
begin
cases (em (finite s)) with fins nfins,
{induction fins with a s fins ans ih,
{rewrite +Sum_empty},
{rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem g ans],
have H1 : f a ≤ g a, from H !mem_insert,
have H2 : (∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x), from ih (forall_of_forall_insert H),
apply add_le_add H1 H2}},
rewrite [+Sum_of_not_finite nfins]
end
proposition Sum_nonneg (f : A → B) {s : set A} (H : ∀₀ x ∈ s, f x ≥ 0) :
(∑ x ∈ s, f x) ≥ 0 :=
calc
0 = (∑ x ∈ s, 0) : Sum_zero
... ≤ (∑ x ∈ s, f x) : Sum_le_Sum (λ x, 0) f H
proposition Sum_nonpos (f : A → B) {s : set A} (H : ∀₀ x ∈ s, f x ≤ 0) :
(∑ x ∈ s, f x) ≤ 0 :=
calc
0 = (∑ x ∈ s, 0) : Sum_zero
... ≥ (∑ x ∈ s, f x) : Sum_le_Sum f (λ x, 0) H
end ordered_comm_group
section decidable_linear_ordered_comm_group
variable [dloocgB : decidable_linear_ordered_comm_group B]
include deceqA dloocgB
proposition abs_Sum_le (f : A → B) (s : set A) : abs (∑ x ∈ s, f x) ≤ (∑ x ∈ s, abs (f x)) :=
begin
cases (em (finite s)) with fins nfins,
rotate 1,
{rewrite [+Sum_of_not_finite nfins, abs_zero]},
induction fins with a s fins ans ih,
{rewrite [+Sum_empty, abs_zero]},
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem _ ans],
apply le.trans,
apply abs_add_le_abs_add_abs,
apply add_le_add_left ih
end
end decidable_linear_ordered_comm_group
end set