lean2/library/data/bv.lean
2016-12-10 22:34:32 +01:00

153 lines
4.7 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Joe Hendrix. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Joe Hendrix
Basic operations on bitvectors.
This is a work-in-progress, and contains additions to other theories.
-/
import data.list
import data.tuple
namespace bv
open bool
open eq.ops
open list
open nat
open prod
open subtype
open tuple
definition bv [reducible] (n : ) := tuple bool n
-- Create a zero bitvector
definition bv_zero (n : ) : bv n := replicate n ff
-- Create a bitvector with the constant one.
definition bv_one : Π (n : ), bv n
| 0 := nil
| (succ n) := (replicate n ff : bv n) ++ (tt :: nil)
definition bv_cong {a b : } : (a = b) → bv a → bv b
| c (tag x p) := tag x (c ▸ p)
section shift
-- shift left
definition bv_shl {n:} : bv n → → bv n
| x i :=
if le : i ≤ n then
let r := dropn i x ++ replicate i ff in
let eq := calc (n-i) + i = n : nat.sub_add_cancel le in
bv_cong eq r
else
bv_zero n
definition fill_shr {n:} (x : bv n) (i : ) (fill : bool) : bv n :=
let y := replicate (min n i) fill ++ firstn (n-i) x in
have min n i + min (n-i) n = n, from if h : i ≤ n then
by rewrite [min_eq_right h, min_eq_left !sub_le, -nat.add_sub_assoc h,
nat.add_sub_cancel_left]
else
have h : i ≥ n, from le_of_not_ge h,
by rewrite [min_eq_left h, sub_eq_zero_of_le h, min_eq_left !zero_le],
bv_cong this y
-- unsigned shift right
definition bv_ushr {n:} : bv n → → bv n
| x i :=
fill_shr x i ff
-- signed shift right
definition bv_sshr {m:} : bv (succ m) → → bv (succ m)
| x i := head x :: fill_shr (tail x) i (head x)
end shift
section bitwise
variable { n : }
definition bv_not : bv n → bv n := map bnot
definition bv_and : bv n → bv n → bv n := map₂ band
definition bv_or : bv n → bv n → bv n := map₂ bor
definition bv_xor : bv n → bv n → bv n := map₂ bxor
end bitwise
section arith
variable { n : }
protected definition xor3 (x:bool) (y:bool) (c:bool) := bxor (bxor x y) c
protected definition carry (x:bool) (y:bool) (c:bool) :=
x && y || x && c || y && c
definition bv_neg : bv n → bv n
| x :=
let f := λy c, (y || c, bxor y c) in
pr₂ (mapAccumR f x ff)
-- Add with carry (no overflow)
definition bv_adc : bv n → bv n → bool → bv (n+1)
| x y c :=
let f := λx y c, (bv.carry x y c, bv.xor3 x y c) in
let z := tuple.mapAccumR₂ f x y c in
(pr₁ z) :: (pr₂ z)
definition bv_add : bv n → bv n → bv n
| x y := tail (bv_adc x y ff)
protected definition borrow (x:bool) (y:bool) (b:bool) :=
bnot x && y || bnot x && b || y && b
-- Subtract with borrow
definition bv_sbb : bv n → bv n → bool → bool × bv n
| x y b :=
let f := λx y c, (bv.borrow x y c, bv.xor3 x y c) in
tuple.mapAccumR₂ f x y b
definition bv_sub : bv n → bv n → bv n
| x y := pr₂ (bv_sbb x y ff)
definition bv_has_zero [instance] : has_zero (bv n) := has_zero.mk (bv_zero n)
definition bv_has_one [instance] : has_one (bv n) := has_one.mk (bv_one n)
definition bv_has_add [instance] : has_add (bv n) := has_add.mk bv_add
definition bv_has_sub [instance] : has_sub (bv n) := has_sub.mk bv_sub
definition bv_has_neg [instance] : has_neg (bv n) := has_neg.mk bv_neg
definition bv_mul : bv n → bv n → bv n
| x y :=
let f := λr b, cond b (r + r + y) (r + r) in
foldl f 0 (to_list x)
definition bv_has_mul [instance] : has_mul (bv n) := has_mul.mk bv_mul
definition bv_ult : bv n → bv n → bool := λx y, pr₁ (bv_sbb x y ff)
definition bv_ugt : bv n → bv n → bool := λx y, bv_ult y x
definition bv_ule : bv n → bv n → bool := λx y, bnot (bv_ult y x)
definition bv_uge : bv n → bv n → bool := λx y, bv_ule y x
definition bv_slt : bv (succ n) → bv (succ n) → bool := λx y,
cond (head x)
(cond (head y)
(bv_ult (tail x) (tail y)) -- both negative
tt) -- x is negative and y is not
(cond (head y)
ff -- y is negative and x is not
(bv_ult (tail x) (tail y))) -- both positive
definition bv_sgt : bv (succ n) → bv (succ n) → bool := λx y, bv_slt y x
definition bv_sle : bv (succ n) → bv (succ n) → bool := λx y, bnot (bv_slt y x)
definition bv_sge : bv (succ n) → bv (succ n) → bool := λx y, bv_sle y x
end arith
section from_bv
variable {A : Type}
-- Convert a bitvector to another number.
definition from_bv [p : has_add A] [q0 : has_zero A] [q1 : has_one A] {n:nat} (v:bv n) : A :=
let f := λr b, cond b (r + r + 1) (r + r) in
foldl f 0 (to_list v)
end from_bv
end bv