195 lines
7.2 KiB
Text
195 lines
7.2 KiB
Text
/-
|
||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad
|
||
|
||
Finite sums and products over intervals of natural numbers.
|
||
-/
|
||
import data.nat.order algebra.group_bigops algebra.interval
|
||
|
||
namespace nat
|
||
|
||
/- sums -/
|
||
|
||
section add_monoid
|
||
|
||
variables {A : Type} [add_monoid A]
|
||
|
||
definition sum_up_to (n : ℕ) (f : ℕ → A) : A :=
|
||
nat.rec_on n 0 (λ n a, a + f n)
|
||
|
||
notation `∑` binders ` < ` n `, ` r:(scoped f, sum_up_to n f) := r
|
||
|
||
proposition sum_up_to_zero (f : ℕ → A) : (∑ i < 0, f i) = 0 := rfl
|
||
|
||
proposition sum_up_to_succ (n : ℕ) (f : ℕ → A) : (∑ i < succ n, f i) = (∑ i < n, f i) + f n := rfl
|
||
|
||
proposition sum_up_to_one (f : ℕ → A) : (∑ i < 1, f i) = f 0 := zero_add (f 0)
|
||
|
||
definition sum_range (m n : ℕ) (f : ℕ → A) : A := sum_up_to (succ n - m) (λ i, f (i + m))
|
||
|
||
notation `∑` binders `=` m `...` n `, ` r:(scoped f, sum_range m n f) := r
|
||
|
||
proposition sum_range_def (m n : ℕ) (f : ℕ → A) :
|
||
(∑ i = m...n, f i) = (∑ i < (succ n - m), f (i + m)) := rfl
|
||
|
||
proposition sum_range_self (m : ℕ) (f : ℕ → A) :
|
||
(∑ i = m...m, f i) = f m :=
|
||
by krewrite [↑sum_range, succ_sub !le.refl, nat.sub_self, sum_up_to_one, zero_add]
|
||
|
||
proposition sum_range_succ {m n : ℕ} (f : ℕ → A) (H : m ≤ succ n) :
|
||
(∑ i = m...succ n, f i) = (∑ i = m...n, f i) + f (succ n) :=
|
||
by rewrite [↑sum_range, succ_sub H, sum_up_to_succ, nat.sub_add_cancel H]
|
||
|
||
proposition sum_up_to_succ_eq_sum_range_zero (n : ℕ) (f : ℕ → A) :
|
||
(∑ i < succ n, f i) = (∑ i = 0...n, f i) := rfl
|
||
|
||
end add_monoid
|
||
|
||
section finset
|
||
variables {A : Type} [add_comm_monoid A]
|
||
open finset
|
||
|
||
proposition sum_up_to_eq_Sum_upto (n : ℕ) (f : ℕ → A) :
|
||
(∑ i < n, f i) = (∑ i ∈ upto n, f i) :=
|
||
begin
|
||
induction n with n ih,
|
||
{exact rfl},
|
||
have H : upto n ∩ '{n} = ∅, from
|
||
inter_eq_empty
|
||
(take x,
|
||
suppose x ∈ upto n,
|
||
have x < n, from lt_of_mem_upto this,
|
||
suppose x ∈ '{n},
|
||
have x = n, by rewrite -mem_singleton_iff; apply this,
|
||
have n < n, from eq.subst this `x < n`,
|
||
show false, from !lt.irrefl this),
|
||
rewrite [sum_up_to_succ, ih, upto_succ, Sum_union _ H, Sum_singleton]
|
||
end
|
||
|
||
end finset
|
||
|
||
section set
|
||
variables {A : Type} [add_comm_monoid A]
|
||
open set interval
|
||
|
||
proposition sum_range_eq_sum_interval_aux (m n : ℕ) (f : ℕ → A) :
|
||
(∑ i = m...m+n, f i) = (∑ i ∈ '[m, m + n], f i) :=
|
||
begin
|
||
induction n with n ih,
|
||
{krewrite [nat.add_zero, sum_range_self, Icc_self, Sum_singleton]},
|
||
have H : m ≤ succ (m + n), from le_of_lt (lt_of_le_of_lt !le_add_right !lt_succ_self),
|
||
have H' : '[m, m + n] ∩ '{succ (m + n)} = ∅, from
|
||
eq_empty_of_forall_not_mem (take x, assume H1,
|
||
have x = succ (m + n), from eq_of_mem_singleton (and.right H1),
|
||
have succ (m + n) ≤ m + n, from eq.subst this (and.right (and.left H1)),
|
||
show false, from not_lt_of_ge this !lt_succ_self),
|
||
rewrite [add_succ, sum_range_succ f H, Icc_eq_Icc_union_Ioc !le_add_right !le_succ,
|
||
nat.Ioc_eq_Icc_succ, Icc_self, Sum_union f H', Sum_singleton, ih]
|
||
end
|
||
|
||
proposition sum_range_eq_sum_interval {m n : ℕ} (f : ℕ → A) (H : m ≤ n) :
|
||
(∑ i = m...n, f i) = (∑ i ∈ '[m, n], f i) :=
|
||
have n = m + (n - m), by rewrite [add.comm, nat.sub_add_cancel H],
|
||
using this, by rewrite this; apply sum_range_eq_sum_interval_aux
|
||
|
||
proposition sum_range_offset (m n : ℕ) (f : ℕ → A) :
|
||
(∑ i = m...m+n, f i) = (∑ i = 0...n, f (m + i)) :=
|
||
have bij_on (add m) ('[0, n]) ('[m, m+n]), from !nat.bij_on_add_Icc_zero,
|
||
by rewrite [-zero_add n at {2}, *sum_range_eq_sum_interval_aux, Sum_eq_of_bij_on f this, zero_add]
|
||
|
||
end set
|
||
|
||
/- products -/
|
||
|
||
section monoid
|
||
|
||
variables {A : Type} [monoid A]
|
||
|
||
definition prod_up_to (n : ℕ) (f : ℕ → A) : A :=
|
||
nat.rec_on n 1 (λ n a, a * f n)
|
||
|
||
notation `∏` binders ` < ` n `, ` r:(scoped f, prod_up_to n f) := r
|
||
|
||
proposition prod_up_to_zero (f : ℕ → A) : (∏ i < 0, f i) = 1 := rfl
|
||
|
||
proposition prod_up_to_succ (n : ℕ) (f : ℕ → A) : (∏ i < succ n, f i) = (∏ i < n, f i) * f n := rfl
|
||
|
||
proposition prod_up_to_one (f : ℕ → A) : (∏ i < 1, f i) = f 0 := one_mul (f 0)
|
||
|
||
definition prod_range (m n : ℕ) (f : ℕ → A) : A := prod_up_to (succ n - m) (λ i, f (i + m))
|
||
|
||
notation `∏` binders `=` m `...` n `, ` r:(scoped f, prod_range m n f) := r
|
||
|
||
proposition prod_range_def (m n : ℕ) (f : ℕ → A) :
|
||
(∏ i = m...n, f i) = (∏ i < (succ n - m), f (i + m)) := rfl
|
||
|
||
proposition prod_range_self (m : ℕ) (f : ℕ → A) :
|
||
(∏ i = m...m, f i) = f m :=
|
||
by krewrite [↑prod_range, succ_sub !le.refl, nat.sub_self, prod_up_to_one, zero_add]
|
||
|
||
proposition prod_range_succ {m n : ℕ} (f : ℕ → A) (H : m ≤ succ n) :
|
||
(∏ i = m...succ n, f i) = (∏ i = m...n, f i) * f (succ n) :=
|
||
by rewrite [↑prod_range, succ_sub H, prod_up_to_succ, nat.sub_add_cancel H]
|
||
|
||
proposition prod_up_to_succ_eq_prod_range_zero (n : ℕ) (f : ℕ → A) :
|
||
(∏ i < succ n, f i) = (∏ i = 0...n, f i) := rfl
|
||
|
||
end monoid
|
||
|
||
section finset
|
||
variables {A : Type} [comm_monoid A]
|
||
open finset
|
||
|
||
proposition prod_up_to_eq_Prod_upto (n : ℕ) (f : ℕ → A) :
|
||
(∏ i < n, f i) = (∏ i ∈ upto n, f i) :=
|
||
begin
|
||
induction n with n ih,
|
||
{exact rfl},
|
||
have H : upto n ∩ '{n} = ∅, from
|
||
inter_eq_empty
|
||
(take x,
|
||
suppose x ∈ upto n,
|
||
have x < n, from lt_of_mem_upto this,
|
||
suppose x ∈ '{n},
|
||
have x = n, by rewrite -mem_singleton_iff; apply this,
|
||
have n < n, from eq.subst this `x < n`,
|
||
show false, from !lt.irrefl this),
|
||
rewrite [prod_up_to_succ, ih, upto_succ, Prod_union _ H, Prod_singleton]
|
||
end
|
||
|
||
end finset
|
||
|
||
section set
|
||
variables {A : Type} [comm_monoid A]
|
||
open set interval
|
||
|
||
proposition prod_range_eq_prod_interval_aux (m n : ℕ) (f : ℕ → A) :
|
||
(∏ i = m...m+n, f i) = (∏ i ∈ '[m, m + n], f i) :=
|
||
begin
|
||
induction n with n ih,
|
||
{krewrite [nat.add_zero, prod_range_self, Icc_self, Prod_singleton]},
|
||
have H : m ≤ succ (m + n), from le_of_lt (lt_of_le_of_lt !le_add_right !lt_succ_self),
|
||
have H' : '[m, m + n] ∩ '{succ (m + n)} = ∅, from
|
||
eq_empty_of_forall_not_mem (take x, assume H1,
|
||
have x = succ (m + n), from eq_of_mem_singleton (and.right H1),
|
||
have succ (m + n) ≤ m + n, from eq.subst this (and.right (and.left H1)),
|
||
show false, from not_lt_of_ge this !lt_succ_self),
|
||
rewrite [add_succ, prod_range_succ f H, Icc_eq_Icc_union_Ioc !le_add_right !le_succ,
|
||
nat.Ioc_eq_Icc_succ, Icc_self, Prod_union f H', Prod_singleton, ih]
|
||
end
|
||
|
||
proposition prod_range_eq_prod_interval {m n : ℕ} (f : ℕ → A) (H : m ≤ n) :
|
||
(∏ i = m...n, f i) = (∏ i ∈ '[m, n], f i) :=
|
||
have n = m + (n - m), by rewrite [add.comm, nat.sub_add_cancel H],
|
||
using this, by rewrite this; apply prod_range_eq_prod_interval_aux
|
||
|
||
proposition prod_range_offset (m n : ℕ) (f : ℕ → A) :
|
||
(∏ i = m...m+n, f i) = (∏ i = 0...n, f (m + i)) :=
|
||
have bij_on (add m) ('[0, n]) ('[m, m+n]), from !nat.bij_on_add_Icc_zero,
|
||
by rewrite [-zero_add n at {2}, *prod_range_eq_prod_interval_aux, Prod_eq_of_bij_on f this,
|
||
zero_add]
|
||
|
||
end set
|
||
|
||
end nat
|