lean2/library/init/classical.lean
Johannes Hölzl 9c28552afb feat(library/algebra): add lattice instances for Prop, fun, and set
Adds weak_order, lattice and complete_lattice instances for Prop, fun, and set. Adds supporting
theorems to various other places.
2016-01-06 10:57:32 -08:00

192 lines
6.3 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
-/
prelude
import init.subtype init.funext
namespace classical
open subtype
/- the axiom -/
-- In the presence of classical logic, we could prove this from a weaker statement:
-- axiom indefinite_description {A : Type} {P : A->Prop} (H : ∃x, P x) : {x : A, P x}
axiom strong_indefinite_description {A : Type} (P : A → Prop) (H : nonempty A) :
{ x | (∃y : A, P y) → P x}
theorem exists_true_of_nonempty {A : Type} (H : nonempty A) : ∃x : A, true :=
nonempty.elim H (take x, exists.intro x trivial)
noncomputable definition inhabited_of_nonempty {A : Type} (H : nonempty A) : inhabited A :=
let u : {x | (∃y : A, true) → true} := strong_indefinite_description (λa, true) H in
inhabited.mk (elt_of u)
noncomputable definition inhabited_of_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : inhabited A :=
inhabited_of_nonempty (obtain w Hw, from H, nonempty.intro w)
/- the Hilbert epsilon function -/
noncomputable definition epsilon {A : Type} [H : nonempty A] (P : A → Prop) : A :=
let u : {x | (∃y, P y) → P x} :=
strong_indefinite_description P H in
elt_of u
theorem epsilon_spec_aux {A : Type} (H : nonempty A) (P : A → Prop) (Hex : ∃y, P y) :
P (@epsilon A H P) :=
let u : {x | (∃y, P y) → P x} :=
strong_indefinite_description P H in
have aux : (∃y, P y) → P (elt_of (strong_indefinite_description P H)), from has_property u,
aux Hex
theorem epsilon_spec {A : Type} {P : A → Prop} (Hex : ∃y, P y) :
P (@epsilon A (nonempty_of_exists Hex) P) :=
epsilon_spec_aux (nonempty_of_exists Hex) P Hex
theorem epsilon_singleton {A : Type} (a : A) : @epsilon A (nonempty.intro a) (λx, x = a) = a :=
epsilon_spec (exists.intro a (eq.refl a))
noncomputable definition some {A : Type} {P : A → Prop} (H : ∃x, P x) : A :=
@epsilon A (nonempty_of_exists H) P
theorem some_spec {A : Type} {P : A → Prop} (H : ∃x, P x) : P (some H) :=
epsilon_spec H
/- the axiom of choice -/
theorem axiom_of_choice {A : Type} {B : A → Type} {R : Πx, B x → Prop} (H : ∀x, ∃y, R x y) :
∃f, ∀x, R x (f x) :=
have H : ∀x, R x (some (H x)), from take x, some_spec (H x),
exists.intro _ H
theorem skolem {A : Type} {B : A → Type} {P : Πx, B x → Prop} :
(∀x, ∃y, P x y) ↔ ∃f, (∀x, P x (f x)) :=
iff.intro
(assume H : (∀x, ∃y, P x y), axiom_of_choice H)
(assume H : (∃f, (∀x, P x (f x))),
take x, obtain (fw : ∀x, B x) (Hw : ∀x, P x (fw x)), from H,
exists.intro (fw x) (Hw x))
/-
Prove excluded middle using Hilbert's choice
The proof follows Diaconescu proof that shows that the axiom of choice implies the excluded middle.
-/
section diaconescu
open eq.ops
parameter p : Prop
private definition U (x : Prop) : Prop := x = true p
private definition V (x : Prop) : Prop := x = false p
private noncomputable definition u := epsilon U
private noncomputable definition v := epsilon V
private lemma u_def : U u :=
epsilon_spec (exists.intro true (or.inl rfl))
private lemma v_def : V v :=
epsilon_spec (exists.intro false (or.inl rfl))
private lemma not_uv_or_p : ¬(u = v) p :=
or.elim u_def
(assume Hut : u = true,
or.elim v_def
(assume Hvf : v = false,
have Hne : ¬(u = v), from Hvf⁻¹ ▸ Hut⁻¹ ▸ true_ne_false,
or.inl Hne)
(assume Hp : p, or.inr Hp))
(assume Hp : p, or.inr Hp)
private lemma p_implies_uv : p → u = v :=
assume Hp : p,
have Hpred : U = V, from
funext (take x : Prop,
have Hl : (x = true p) → (x = false p), from
assume A, or.inr Hp,
have Hr : (x = false p) → (x = true p), from
assume A, or.inr Hp,
show (x = true p) = (x = false p), from
propext (iff.intro Hl Hr)),
have H' : epsilon U = epsilon V, from Hpred ▸ rfl,
show u = v, from H'
theorem em : p ¬p :=
have H : ¬(u = v) → ¬p, from mt p_implies_uv,
or.elim not_uv_or_p
(assume Hne : ¬(u = v), or.inr (H Hne))
(assume Hp : p, or.inl Hp)
end diaconescu
theorem prop_complete (a : Prop) : a = true a = false :=
or.elim (em a)
(λ t, or.inl (propext (iff.intro (λ h, trivial) (λ h, t))))
(λ f, or.inr (propext (iff.intro (λ h, absurd h f) (λ h, false.elim h))))
definition eq_true_or_eq_false := prop_complete
section aux
open eq.ops
theorem cases_true_false (P : Prop → Prop) (H1 : P true) (H2 : P false) (a : Prop) : P a :=
or.elim (prop_complete a)
(assume Ht : a = true, Ht⁻¹ ▸ H1)
(assume Hf : a = false, Hf⁻¹ ▸ H2)
theorem cases_on (a : Prop) {P : Prop → Prop} (H1 : P true) (H2 : P false) : P a :=
cases_true_false P H1 H2 a
-- this supercedes by_cases in decidable
definition by_cases {p q : Prop} (Hpq : p → q) (Hnpq : ¬p → q) : q :=
or.elim (em p) (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
-- this supercedes by_contradiction in decidable
theorem by_contradiction {p : Prop} (H : ¬p → false) : p :=
by_cases
(assume H1 : p, H1)
(assume H1 : ¬p, false.rec _ (H H1))
theorem eq_false_or_eq_true (a : Prop) : a = false a = true :=
cases_true_false (λ x, x = false x = true)
(or.inr rfl)
(or.inl rfl)
a
theorem eq.of_iff {a b : Prop} (H : a ↔ b) : a = b :=
iff.elim (assume H1 H2, propext (iff.intro H1 H2)) H
theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b) :=
propext (iff.intro
(assume H, eq.of_iff H)
(assume H, iff.of_eq H))
lemma eq_false {a : Prop} : (a = false) = (¬ a) :=
begin
rewrite ((@iff_eq_eq a false)⁻¹),
rewrite iff_false
end
lemma eq_true {a : Prop} : (a = true) = a :=
begin
rewrite ((@iff_eq_eq a true)⁻¹),
rewrite iff_true
end
end aux
/- All propositions are decidable -/
open decidable
noncomputable definition decidable_inhabited [instance] [priority 0] (a : Prop) : inhabited (decidable a) :=
inhabited_of_nonempty
(or.elim (em a)
(assume Ha, nonempty.intro (inl Ha))
(assume Hna, nonempty.intro (inr Hna)))
noncomputable definition prop_decidable [instance] [priority 0] (a : Prop) : decidable a :=
arbitrary (decidable a)
noncomputable definition type_decidable (A : Type) : sum A (A → false) :=
match prop_decidable (nonempty A) with
| inl Hp := sum.inl (inhabited.value (inhabited_of_nonempty Hp))
| inr Hn := sum.inr (λ a, absurd (nonempty.intro a) Hn)
end
end classical