lean2/tests/lean/run/ind_tac.lean

91 lines
2.7 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Define propositional calculus, valuation, provability, validity, prove soundness.
This file is based on Floris van Doorn Coq files.
-/
import data.nat data.list
open nat bool list decidable
definition PropVar [reducible] := nat
inductive PropF :=
| Var : PropVar → PropF
| Bot : PropF
| Conj : PropF → PropF → PropF
| Disj : PropF → PropF → PropF
| Impl : PropF → PropF → PropF
namespace PropF
notation `#`:max P:max := Var P
notation A B := Disj A B
notation A ∧ B := Conj A B
infixr `⇒`:27 := Impl
notation `⊥` := Bot
definition Neg A := A ⇒ ⊥
notation ~ A := Neg A
definition Top := ~⊥
notation `` := Top
definition BiImpl A B := A ⇒ B ∧ B ⇒ A
infixr `⇔`:27 := BiImpl
definition valuation := PropVar → bool
definition TrueQ (v : valuation) : PropF → bool
| TrueQ (# P) := v P
| TrueQ ⊥ := ff
| TrueQ (A B) := TrueQ A || TrueQ B
| TrueQ (A ∧ B) := TrueQ A && TrueQ B
| TrueQ (A ⇒ B) := bnot (TrueQ A) || TrueQ B
definition is_true [reducible] (b : bool) := b = tt
-- the valuation v satisfies a list of PropF, if forall (A : PropF) in Γ,
-- (TrueQ v A) is tt (the Boolean true)
definition Satisfies v Γ := ∀ A, A ∈ Γ → is_true (TrueQ v A)
definition Models Γ A := ∀ v, Satisfies v Γ → is_true (TrueQ v A)
infix `⊨`:80 := Models
definition Valid p := [] ⊨ p
reserve infix `⊢`:26
/- Provability -/
inductive Nc : list PropF → PropF → Prop :=
infix ⊢ := Nc
| Nax : ∀ Γ A, A ∈ Γ → Γ ⊢ A
| ImpI : ∀ Γ A B, A::Γ ⊢ B → Γ ⊢ A ⇒ B
| ImpE : ∀ Γ A B, Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B
| BotC : ∀ Γ A, (~A)::Γ ⊢ ⊥ → Γ ⊢ A
| AndI : ∀ Γ A B, Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
| AndE₁ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ A
| AndE₂ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ B
| OrI₁ : ∀ Γ A B, Γ ⊢ A → Γ ⊢ A B
| OrI₂ : ∀ Γ A B, Γ ⊢ B → Γ ⊢ A B
| OrE : ∀ Γ A B C, Γ ⊢ A B → A::Γ ⊢ C → B::Γ ⊢ C → Γ ⊢ C
infix ⊢ := Nc
definition Provable A := [] ⊢ A
definition Prop_Soundness := ∀ A, Provable A → Valid A
definition Prop_Completeness := ∀ A, Valid A → Provable A
open Nc
lemma weakening2 (Γ A) (H : Γ ⊢ A) (Δ) (Hs : Γ ⊆ Δ) : Δ ⊢ A :=
begin
induction H,
state,
exact !Nax (Hs a),
repeat (apply sorry)
end
end PropF