477 lines
18 KiB
Text
477 lines
18 KiB
Text
/-
|
||
Copyright (c) 2014 Parikshit Khanna. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: data.list.basic
|
||
Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura
|
||
|
||
Basic properties of lists.
|
||
-/
|
||
import logic tools.helper_tactics data.nat.basic algebra.function
|
||
|
||
open eq.ops helper_tactics nat prod function
|
||
|
||
inductive list (T : Type) : Type :=
|
||
| nil {} : list T
|
||
| cons : T → list T → list T
|
||
|
||
namespace list
|
||
notation h :: t := cons h t
|
||
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
|
||
|
||
variable {T : Type}
|
||
|
||
/- append -/
|
||
|
||
definition append : list T → list T → list T
|
||
| [] l := l
|
||
| (h :: s) t := h :: (append s t)
|
||
|
||
notation l₁ ++ l₂ := append l₁ l₂
|
||
|
||
theorem append_nil_left (t : list T) : [] ++ t = t
|
||
|
||
theorem append_cons (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t)
|
||
|
||
theorem append_nil_right : ∀ (t : list T), t ++ [] = t
|
||
| [] := rfl
|
||
| (a :: l) := calc
|
||
(a :: l) ++ [] = a :: (l ++ []) : rfl
|
||
... = a :: l : append_nil_right l
|
||
|
||
theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u)
|
||
| [] t u := rfl
|
||
| (a :: l) t u :=
|
||
show a :: (l ++ t ++ u) = (a :: l) ++ (t ++ u),
|
||
by rewrite (append.assoc l t u)
|
||
|
||
/- length -/
|
||
definition length : list T → nat
|
||
| [] := 0
|
||
| (a :: l) := length l + 1
|
||
|
||
theorem length_nil : length (@nil T) = 0
|
||
|
||
theorem length_cons (x : T) (t : list T) : length (x::t) = length t + 1
|
||
|
||
theorem length_append : ∀ (s t : list T), length (s ++ t) = length s + length t
|
||
| [] t := calc
|
||
length ([] ++ t) = length t : rfl
|
||
... = length [] + length t : zero_add
|
||
| (a :: s) t := calc
|
||
length (a :: s ++ t) = length (s ++ t) + 1 : rfl
|
||
... = length s + length t + 1 : length_append
|
||
... = (length s + 1) + length t : add.succ_left
|
||
... = length (a :: s) + length t : rfl
|
||
|
||
theorem eq_nil_of_length_eq_zero : ∀ {l : list T}, length l = 0 → l = []
|
||
| [] H := rfl
|
||
| (a::s) H := nat.no_confusion H
|
||
|
||
-- add_rewrite length_nil length_cons
|
||
|
||
/- concat -/
|
||
|
||
definition concat : Π (x : T), list T → list T
|
||
| a [] := [a]
|
||
| a (b :: l) := b :: concat a l
|
||
|
||
theorem concat_nil (x : T) : concat x [] = [x]
|
||
|
||
theorem concat_cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l)
|
||
|
||
theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a]
|
||
| [] := rfl
|
||
| (b :: l) :=
|
||
show b :: (concat a l) = (b :: l) ++ (a :: []),
|
||
by rewrite concat_eq_append
|
||
|
||
-- add_rewrite append_nil append_cons
|
||
|
||
/- reverse -/
|
||
|
||
definition reverse : list T → list T
|
||
| [] := []
|
||
| (a :: l) := concat a (reverse l)
|
||
|
||
theorem reverse_nil : reverse (@nil T) = []
|
||
|
||
theorem reverse_cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l)
|
||
|
||
theorem reverse_singleton (x : T) : reverse [x] = [x]
|
||
|
||
theorem reverse_append : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s)
|
||
| [] t2 := calc
|
||
reverse ([] ++ t2) = reverse t2 : rfl
|
||
... = (reverse t2) ++ [] : append_nil_right
|
||
... = (reverse t2) ++ (reverse []) : by rewrite reverse_nil
|
||
| (a2 :: s2) t2 := calc
|
||
reverse ((a2 :: s2) ++ t2) = concat a2 (reverse (s2 ++ t2)) : rfl
|
||
... = concat a2 (reverse t2 ++ reverse s2) : reverse_append
|
||
... = (reverse t2 ++ reverse s2) ++ [a2] : concat_eq_append
|
||
... = reverse t2 ++ (reverse s2 ++ [a2]) : append.assoc
|
||
... = reverse t2 ++ concat a2 (reverse s2) : concat_eq_append
|
||
... = reverse t2 ++ reverse (a2 :: s2) : rfl
|
||
|
||
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l
|
||
| [] := rfl
|
||
| (a :: l) := calc
|
||
reverse (reverse (a :: l)) = reverse (concat a (reverse l)) : rfl
|
||
... = reverse (reverse l ++ [a]) : concat_eq_append
|
||
... = reverse [a] ++ reverse (reverse l) : reverse_append
|
||
... = reverse [a] ++ l : reverse_reverse
|
||
... = a :: l : rfl
|
||
|
||
theorem concat_eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) :=
|
||
calc
|
||
concat x l = concat x (reverse (reverse l)) : reverse_reverse
|
||
... = reverse (x :: reverse l) : rfl
|
||
|
||
/- head and tail -/
|
||
|
||
definition head [h : inhabited T] : list T → T
|
||
| [] := arbitrary T
|
||
| (a :: l) := a
|
||
|
||
theorem head_cons [h : inhabited T] (a : T) (l : list T) : head (a::l) = a
|
||
|
||
theorem head_append [h : inhabited T] (t : list T) : ∀ {s : list T}, s ≠ [] → head (s ++ t) = head s
|
||
| [] H := absurd rfl H
|
||
| (a :: s) H :=
|
||
show head (a :: (s ++ t)) = head (a :: s),
|
||
by rewrite head_cons
|
||
|
||
definition tail : list T → list T
|
||
| [] := []
|
||
| (a :: l) := l
|
||
|
||
theorem tail_nil : tail (@nil T) = []
|
||
|
||
theorem tail_cons (a : T) (l : list T) : tail (a::l) = l
|
||
|
||
theorem cons_head_tail [h : inhabited T] {l : list T} : l ≠ [] → (head l)::(tail l) = l :=
|
||
list.cases_on l
|
||
(assume H : [] ≠ [], absurd rfl H)
|
||
(take x l, assume H : x::l ≠ [], rfl)
|
||
|
||
/- list membership -/
|
||
|
||
definition mem : T → list T → Prop
|
||
| a [] := false
|
||
| a (b :: l) := a = b ∨ mem a l
|
||
|
||
notation e ∈ s := mem e s
|
||
notation e ∉ s := ¬ e ∈ s
|
||
|
||
theorem mem_nil (x : T) : x ∈ [] ↔ false :=
|
||
iff.rfl
|
||
|
||
theorem not_mem_nil (x : T) : x ∉ [] :=
|
||
iff.mp !mem_nil
|
||
|
||
theorem mem_cons (x : T) (l : list T) : x ∈ x :: l :=
|
||
or.inl rfl
|
||
|
||
theorem mem_cons_of_mem (y : T) {x : T} {l : list T} : x ∈ l → x ∈ y :: l :=
|
||
assume H, or.inr H
|
||
|
||
theorem mem_cons_iff (x y : T) (l : list T) : x ∈ y::l ↔ (x = y ∨ x ∈ l) :=
|
||
iff.rfl
|
||
|
||
theorem eq_or_mem_of_mem_cons {x y : T} {l : list T} : x ∈ y::l → x = y ∨ x ∈ l :=
|
||
assume h, h
|
||
|
||
theorem mem_singleton {x a : T} : x ∈ [a] → x = a :=
|
||
assume h : x ∈ [a], or.elim (eq_or_mem_of_mem_cons h)
|
||
(λ xeqa : x = a, xeqa)
|
||
(λ xinn : x ∈ [], absurd xinn !not_mem_nil)
|
||
|
||
theorem mem_of_mem_cons_of_mem {a b : T} {l : list T} : a ∈ b::l → b ∈ l → a ∈ l :=
|
||
assume ainbl binl, or.elim (eq_or_mem_of_mem_cons ainbl)
|
||
(λ aeqb : a = b, by rewrite [aeqb]; exact binl)
|
||
(λ ainl : a ∈ l, ainl)
|
||
|
||
theorem mem_or_mem_of_mem_append {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t :=
|
||
list.induction_on s or.inr
|
||
(take y s,
|
||
assume IH : x ∈ s ++ t → x ∈ s ∨ x ∈ t,
|
||
assume H1 : x ∈ y::s ++ t,
|
||
have H2 : x = y ∨ x ∈ s ++ t, from H1,
|
||
have H3 : x = y ∨ x ∈ s ∨ x ∈ t, from or_of_or_of_imp_right H2 IH,
|
||
iff.elim_right or.assoc H3)
|
||
|
||
theorem mem_append_of_mem_or_mem {x : T} {s t : list T} : x ∈ s ∨ x ∈ t → x ∈ s ++ t :=
|
||
list.induction_on s
|
||
(take H, or.elim H false.elim (assume H, H))
|
||
(take y s,
|
||
assume IH : x ∈ s ∨ x ∈ t → x ∈ s ++ t,
|
||
assume H : x ∈ y::s ∨ x ∈ t,
|
||
or.elim H
|
||
(assume H1,
|
||
or.elim (eq_or_mem_of_mem_cons H1)
|
||
(take H2 : x = y, or.inl H2)
|
||
(take H2 : x ∈ s, or.inr (IH (or.inl H2))))
|
||
(assume H1 : x ∈ t, or.inr (IH (or.inr H1))))
|
||
|
||
theorem mem_append_iff (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s ∨ x ∈ t :=
|
||
iff.intro mem_or_mem_of_mem_append mem_append_of_mem_or_mem
|
||
|
||
theorem not_mem_of_not_mem_append_left {x : T} {s t : list T} : x ∉ s++t → x ∉ s :=
|
||
λ nxinst xins, absurd (mem_append_of_mem_or_mem (or.inl xins)) nxinst
|
||
|
||
theorem not_mem_of_not_mem_append_right {x : T} {s t : list T} : x ∉ s++t → x ∉ t :=
|
||
λ nxinst xint, absurd (mem_append_of_mem_or_mem (or.inr xint)) nxinst
|
||
|
||
theorem not_mem_append {x : T} {s t : list T} : x ∉ s → x ∉ t → x ∉ s++t :=
|
||
λ nxins nxint xinst, or.elim (mem_or_mem_of_mem_append xinst)
|
||
(λ xins, absurd xins nxins)
|
||
(λ xint, absurd xint nxint)
|
||
|
||
local attribute mem [reducible]
|
||
local attribute append [reducible]
|
||
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
|
||
list.induction_on l
|
||
(take H : x ∈ [], false.elim (iff.elim_left !mem_nil H))
|
||
(take y l,
|
||
assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t),
|
||
assume H : x ∈ y::l,
|
||
or.elim (eq_or_mem_of_mem_cons H)
|
||
(assume H1 : x = y,
|
||
exists.intro [] (!exists.intro (H1 ▸ rfl)))
|
||
(assume H1 : x ∈ l,
|
||
obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1,
|
||
obtain t (H3 : l = s ++ (x::t)), from H2,
|
||
have H4 : y :: l = (y::s) ++ (x::t),
|
||
from H3 ▸ rfl,
|
||
!exists.intro (!exists.intro H4)))
|
||
|
||
theorem mem_append_left {a : T} {l₁ : list T} (l₂ : list T) : a ∈ l₁ → a ∈ l₁ ++ l₂ :=
|
||
assume ainl₁, mem_append_of_mem_or_mem (or.inl ainl₁)
|
||
|
||
theorem mem_append_right {a : T} (l₁ : list T) {l₂ : list T} : a ∈ l₂ → a ∈ l₁ ++ l₂ :=
|
||
assume ainl₂, mem_append_of_mem_or_mem (or.inr ainl₂)
|
||
|
||
definition decidable_mem [instance] [H : decidable_eq T] (x : T) (l : list T) : decidable (x ∈ l) :=
|
||
list.rec_on l
|
||
(decidable.inr (not_of_iff_false !mem_nil))
|
||
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
|
||
show decidable (x ∈ h::l), from
|
||
decidable.rec_on iH
|
||
(assume Hp : x ∈ l,
|
||
decidable.rec_on (H x h)
|
||
(assume Heq : x = h,
|
||
decidable.inl (or.inl Heq))
|
||
(assume Hne : x ≠ h,
|
||
decidable.inl (or.inr Hp)))
|
||
(assume Hn : ¬x ∈ l,
|
||
decidable.rec_on (H x h)
|
||
(assume Heq : x = h,
|
||
decidable.inl (or.inl Heq))
|
||
(assume Hne : x ≠ h,
|
||
have H1 : ¬(x = h ∨ x ∈ l), from
|
||
assume H2 : x = h ∨ x ∈ l, or.elim H2
|
||
(assume Heq, absurd Heq Hne)
|
||
(assume Hp, absurd Hp Hn),
|
||
have H2 : ¬x ∈ h::l, from
|
||
iff.elim_right (not_iff_not_of_iff !mem_cons_iff) H1,
|
||
decidable.inr H2)))
|
||
|
||
theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l :=
|
||
or.elim (eq_or_mem_of_mem_cons H₂) (λe, absurd e H₁) (λr, r)
|
||
|
||
theorem not_eq_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ≠ b :=
|
||
assume nin aeqb, absurd (or.inl aeqb) nin
|
||
|
||
theorem not_mem_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ∉ l :=
|
||
assume nin nainl, absurd (or.inr nainl) nin
|
||
|
||
definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈ l₂
|
||
|
||
infix `⊆`:50 := sublist
|
||
|
||
theorem nil_sub (l : list T) : [] ⊆ l :=
|
||
λ b i, false.elim (iff.mp (mem_nil b) i)
|
||
|
||
theorem sub.refl (l : list T) : l ⊆ l :=
|
||
λ b i, i
|
||
|
||
theorem sub.trans {l₁ l₂ l₃ : list T} (H₁ : l₁ ⊆ l₂) (H₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃ :=
|
||
λ b i, H₂ (H₁ i)
|
||
|
||
theorem sub_cons (a : T) (l : list T) : l ⊆ a::l :=
|
||
λ b i, or.inr i
|
||
|
||
theorem sub_of_cons_sub {a : T} {l₁ l₂ : list T} : a::l₁ ⊆ l₂ → l₁ ⊆ l₂ :=
|
||
λ s b i, s b (mem_cons_of_mem _ i)
|
||
|
||
theorem cons_sub_cons {l₁ l₂ : list T} (a : T) (s : l₁ ⊆ l₂) : (a::l₁) ⊆ (a::l₂) :=
|
||
λ b Hin, or.elim (eq_or_mem_of_mem_cons Hin)
|
||
(λ e : b = a, or.inl e)
|
||
(λ i : b ∈ l₁, or.inr (s i))
|
||
|
||
theorem sub_append_left (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ :=
|
||
λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inl i)
|
||
|
||
theorem sub_append_right (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ :=
|
||
λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inr i)
|
||
|
||
theorem sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) :=
|
||
λ (s : l₁ ⊆ l₂) (x : T) (i : x ∈ l₁), or.inr (s i)
|
||
|
||
theorem sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ :=
|
||
λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l),
|
||
have xinl₁ : x ∈ l₁, from s xinl,
|
||
mem_append_of_mem_or_mem (or.inl xinl₁)
|
||
|
||
theorem sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ :=
|
||
λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l),
|
||
have xinl₁ : x ∈ l₂, from s xinl,
|
||
mem_append_of_mem_or_mem (or.inr xinl₁)
|
||
|
||
theorem cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m :=
|
||
λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim (eq_or_mem_of_mem_cons xinal)
|
||
(assume xeqa : x = a, eq.rec_on (eq.symm xeqa) ainm)
|
||
(assume xinl : x ∈ l, lsubm xinl)
|
||
|
||
theorem app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l :=
|
||
λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂),
|
||
or.elim (mem_or_mem_of_mem_append xinl₁l₂)
|
||
(λ xinl₁ : x ∈ l₁, l₁subl xinl₁)
|
||
(λ xinl₂ : x ∈ l₂, l₂subl xinl₂)
|
||
|
||
/- find -/
|
||
|
||
section
|
||
variable [H : decidable_eq T]
|
||
include H
|
||
|
||
definition find : T → list T → nat
|
||
| a [] := 0
|
||
| a (b :: l) := if a = b then 0 else succ (find a l)
|
||
|
||
theorem find_nil (x : T) : find x [] = 0
|
||
|
||
theorem find_cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l)
|
||
|
||
theorem find.not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l :=
|
||
list.rec_on l
|
||
(assume P₁ : ¬x ∈ [], _)
|
||
(take y l,
|
||
assume iH : ¬x ∈ l → find x l = length l,
|
||
assume P₁ : ¬x ∈ y::l,
|
||
have P₂ : ¬(x = y ∨ x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) P₁,
|
||
have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not P₂),
|
||
calc
|
||
find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons
|
||
... = succ (find x l) : if_neg (and.elim_left P₃)
|
||
... = succ (length l) : {iH (and.elim_right P₃)}
|
||
... = length (y::l) : !length_cons⁻¹)
|
||
end
|
||
|
||
/- nth element -/
|
||
definition nth [h : inhabited T] : list T → nat → T
|
||
| [] n := arbitrary T
|
||
| (a :: l) 0 := a
|
||
| (a :: l) (n+1) := nth l n
|
||
|
||
theorem nth_zero [h : inhabited T] (a : T) (l : list T) : nth (a :: l) 0 = a
|
||
|
||
theorem nth_succ [h : inhabited T] (a : T) (l : list T) (n : nat) : nth (a::l) (n+1) = nth l n
|
||
|
||
open decidable
|
||
definition has_decidable_eq {A : Type} [H : decidable_eq A] : ∀ l₁ l₂ : list A, decidable (l₁ = l₂)
|
||
| [] [] := inl rfl
|
||
| [] (b::l₂) := inr (λ H, list.no_confusion H)
|
||
| (a::l₁) [] := inr (λ H, list.no_confusion H)
|
||
| (a::l₁) (b::l₂) :=
|
||
match H a b with
|
||
| inl Hab :=
|
||
match has_decidable_eq l₁ l₂ with
|
||
| inl He := inl (eq.rec_on Hab (eq.rec_on He rfl))
|
||
| inr Hn := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Ht Hn))
|
||
end
|
||
| inr Hnab := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Hab Hnab))
|
||
end
|
||
|
||
/- quasiequal a l l' means that l' is exactly l, with a added
|
||
once somewhere -/
|
||
section qeq
|
||
variable {A : Type}
|
||
inductive qeq (a : A) : list A → list A → Prop :=
|
||
| qhead : ∀ l, qeq a l (a::l)
|
||
| qcons : ∀ (b : A) {l l' : list A}, qeq a l l' → qeq a (b::l) (b::l')
|
||
|
||
open qeq
|
||
|
||
notation l' `≈`:50 a `|` l:50 := qeq a l l'
|
||
|
||
theorem qeq_app : ∀ (l₁ : list A) (a : A) (l₂ : list A), l₁++(a::l₂) ≈ a|l₁++l₂
|
||
| [] a l₂ := qhead a l₂
|
||
| (x::xs) a l₂ := qcons x (qeq_app xs a l₂)
|
||
|
||
theorem mem_head_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → a ∈ l₁ :=
|
||
take q, qeq.induction_on q
|
||
(λ l, !mem_cons)
|
||
(λ b l l' q r, or.inr r)
|
||
|
||
theorem mem_tail_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₂ → x ∈ l₁ :=
|
||
take q, qeq.induction_on q
|
||
(λ l x i, or.inr i)
|
||
(λ b l l' q r x xinbl, or.elim (eq_or_mem_of_mem_cons xinbl)
|
||
(λ xeqb : x = b, xeqb ▸ mem_cons x l')
|
||
(λ xinl : x ∈ l, or.inr (r x xinl)))
|
||
|
||
theorem mem_cons_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₁ → x ∈ a::l₂ :=
|
||
take q, qeq.induction_on q
|
||
(λ l x i, i)
|
||
(λ b l l' q r x xinbl', or.elim (eq_or_mem_of_mem_cons xinbl')
|
||
(λ xeqb : x = b, xeqb ▸ or.inr (mem_cons x l))
|
||
(λ xinl' : x ∈ l', or.elim (eq_or_mem_of_mem_cons (r x xinl'))
|
||
(λ xeqa : x = a, xeqa ▸ mem_cons x (b::l))
|
||
(λ xinl : x ∈ l, or.inr (or.inr xinl))))
|
||
|
||
theorem length_eq_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → length l₁ = succ (length l₂) :=
|
||
take q, qeq.induction_on q
|
||
(λ l, rfl)
|
||
(λ b l l' q r, by rewrite [*length_cons, r])
|
||
|
||
theorem qeq_of_mem {a : A} {l : list A} : a ∈ l → (∃l', l≈a|l') :=
|
||
list.induction_on l
|
||
(λ h : a ∈ nil, absurd h (not_mem_nil a))
|
||
(λ x xs r ainxxs, or.elim (eq_or_mem_of_mem_cons ainxxs)
|
||
(λ aeqx : a = x,
|
||
assert aux : ∃ l, x::xs≈x|l, from
|
||
exists.intro xs (qhead x xs),
|
||
by rewrite aeqx; exact aux)
|
||
(λ ainxs : a ∈ xs,
|
||
have ex : ∃l', xs ≈ a|l', from r ainxs,
|
||
obtain (l' : list A) (q : xs ≈ a|l'), from ex,
|
||
have q₂ : x::xs ≈ a | x::l', from qcons x q,
|
||
exists.intro (x::l') q₂))
|
||
|
||
theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
|
||
take q, qeq.induction_on q
|
||
(λ t,
|
||
have aux : t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl,
|
||
exists.intro [] (exists.intro t aux))
|
||
(λ b t t' q r,
|
||
obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r,
|
||
have aux : b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂),
|
||
begin
|
||
rewrite [and.elim_right h, and.elim_left h],
|
||
exact (and.intro rfl rfl)
|
||
end,
|
||
exists.intro (b::l₁) (exists.intro l₂ aux))
|
||
|
||
theorem sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u :=
|
||
λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l),
|
||
have xinv : x ∈ v, from s (or.inr xinl),
|
||
have xinau : x ∈ a::u, from mem_cons_of_qeq q x xinv,
|
||
or.elim (eq_or_mem_of_mem_cons xinau)
|
||
(λ xeqa : x = a, absurd (xeqa ▸ xinl) nainl)
|
||
(λ xinu : x ∈ u, xinu)
|
||
end qeq
|
||
end list
|
||
|
||
attribute list.has_decidable_eq [instance]
|
||
attribute list.decidable_mem [instance]
|