df58eb132e
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
375 lines
15 KiB
Text
375 lines
15 KiB
Text
Set: pp::colors
|
||
Set: pp::unicode
|
||
Assumed: f
|
||
Failed to solve
|
||
⊢ (?M::1 ≈ λ x : ℕ, x) ⊕ (?M::1 ≈ nat_to_int) ⊕ (?M::1 ≈ nat_to_real)
|
||
(line: 4: pos: 8) Coercion for
|
||
10
|
||
Failed to solve
|
||
⊢ Bool ≺ ℕ
|
||
Substitution
|
||
⊢ Bool ≺ ?M::0
|
||
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
|
||
@f
|
||
with arguments:
|
||
?M::0
|
||
?M::1 10
|
||
⊤
|
||
Assignment
|
||
⊢ ℕ ≺ ?M::0
|
||
Substitution
|
||
⊢ ?M::5[inst:0 (10)] ≺ ?M::0
|
||
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
|
||
@f
|
||
with arguments:
|
||
?M::0
|
||
?M::1 10
|
||
⊤
|
||
Assignment
|
||
x : ℕ ⊢ ℕ ≈ ?M::5
|
||
Destruct/Decompose
|
||
⊢ ℕ → ℕ ≈ Π x : ?M::4, ?M::5
|
||
Substitution
|
||
⊢ ?M::3 ≈ Π x : ?M::4, ?M::5
|
||
Function expected at
|
||
?M::1 10
|
||
Assignment
|
||
⊢ ℕ → ℕ ≺ ?M::3
|
||
Propagate type, ?M::1 : ?M::3
|
||
Assignment
|
||
⊢ ?M::1 ≈ λ x : ℕ, x
|
||
Assumption 0
|
||
Failed to solve
|
||
⊢ Bool ≺ ℤ
|
||
Substitution
|
||
⊢ Bool ≺ ?M::0
|
||
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
|
||
@f
|
||
with arguments:
|
||
?M::0
|
||
?M::1 10
|
||
⊤
|
||
Assignment
|
||
⊢ ℤ ≺ ?M::0
|
||
Substitution
|
||
⊢ ?M::5[inst:0 (10)] ≺ ?M::0
|
||
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
|
||
@f
|
||
with arguments:
|
||
?M::0
|
||
?M::1 10
|
||
⊤
|
||
Assignment
|
||
a : ℕ ⊢ ℤ ≈ ?M::5
|
||
Destruct/Decompose
|
||
⊢ ℕ → ℤ ≈ Π x : ?M::4, ?M::5
|
||
Substitution
|
||
⊢ ?M::3 ≈ Π x : ?M::4, ?M::5
|
||
Function expected at
|
||
?M::1 10
|
||
Assignment
|
||
⊢ ℕ → ℤ ≺ ?M::3
|
||
Propagate type, ?M::1 : ?M::3
|
||
Assignment
|
||
⊢ ?M::1 ≈ nat_to_int
|
||
Assumption 1
|
||
Failed to solve
|
||
⊢ Bool ≺ ℝ
|
||
Substitution
|
||
⊢ Bool ≺ ?M::0
|
||
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
|
||
@f
|
||
with arguments:
|
||
?M::0
|
||
?M::1 10
|
||
⊤
|
||
Assignment
|
||
⊢ ℝ ≺ ?M::0
|
||
Substitution
|
||
⊢ ?M::5[inst:0 (10)] ≺ ?M::0
|
||
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
|
||
@f
|
||
with arguments:
|
||
?M::0
|
||
?M::1 10
|
||
⊤
|
||
Assignment
|
||
a : ℕ ⊢ ℝ ≈ ?M::5
|
||
Destruct/Decompose
|
||
⊢ ℕ → ℝ ≈ Π x : ?M::4, ?M::5
|
||
Substitution
|
||
⊢ ?M::3 ≈ Π x : ?M::4, ?M::5
|
||
Function expected at
|
||
?M::1 10
|
||
Assignment
|
||
⊢ ℕ → ℝ ≺ ?M::3
|
||
Propagate type, ?M::1 : ?M::3
|
||
Assignment
|
||
⊢ ?M::1 ≈ nat_to_real
|
||
Assumption 2
|
||
Assumed: g
|
||
Error (line: 7, pos: 8) invalid expression, it still contains metavariables after elaboration, metavariable: ?M::1, type:
|
||
Type
|
||
Assumed: h
|
||
Failed to solve
|
||
x : ?M::0, A : Type ⊢ ?M::0 ≺ A
|
||
(line: 11: pos: 27) Type of argument 2 must be convertible to the expected type in the application of
|
||
h
|
||
with arguments:
|
||
A
|
||
x
|
||
Assumed: my_eq
|
||
Failed to solve
|
||
A : Type, B : Type, a : ?M::0, b : ?M::1, C : Type ⊢ ?M::0[lift:0:3] ≺ C
|
||
(line: 15: pos: 51) Type of argument 2 must be convertible to the expected type in the application of
|
||
my_eq
|
||
with arguments:
|
||
C
|
||
a
|
||
b
|
||
Assumed: a
|
||
Assumed: b
|
||
Assumed: H
|
||
Failed to solve
|
||
⊢ ?M::0 ⇒ ?M::3 ∧ a ≺ b
|
||
Substitution
|
||
⊢ ?M::0 ⇒ ?M::1 ≺ b
|
||
(line: 20: pos: 18) Type of definition 't1' must be convertible to expected type.
|
||
Assignment
|
||
H1 : ?M::2 ⊢ ?M::3 ∧ a ≺ ?M::1
|
||
Substitution
|
||
H1 : ?M::2 ⊢ ?M::3 ∧ ?M::4 ≺ ?M::1
|
||
Destruct/Decompose
|
||
⊢ Π H1 : ?M::2, ?M::3 ∧ ?M::4 ≺ Π a : ?M::0, ?M::1
|
||
(line: 20: pos: 18) Type of argument 3 must be convertible to the expected type in the application of
|
||
@Discharge
|
||
with arguments:
|
||
?M::0
|
||
?M::1
|
||
λ H1 : ?M::2, Conj H1 (Conjunct1 H)
|
||
Assignment
|
||
H1 : ?M::2 ⊢ a ≺ ?M::4
|
||
Substitution
|
||
H1 : ?M::2 ⊢ ?M::5 ≺ ?M::4
|
||
(line: 20: pos: 37) Type of argument 4 must be convertible to the expected type in the application of
|
||
@Conj
|
||
with arguments:
|
||
?M::3
|
||
?M::4
|
||
H1
|
||
Conjunct1 H
|
||
Assignment
|
||
H1 : ?M::2 ⊢ a ≈ ?M::5
|
||
Destruct/Decompose
|
||
H1 : ?M::2 ⊢ a ∧ b ≺ ?M::5 ∧ ?M::6
|
||
(line: 20: pos: 45) Type of argument 3 must be convertible to the expected type in the application of
|
||
@Conjunct1
|
||
with arguments:
|
||
?M::5
|
||
?M::6
|
||
H
|
||
Failed to solve
|
||
⊢ b ≈ a
|
||
Substitution
|
||
⊢ b ≈ ?M::3
|
||
Destruct/Decompose
|
||
⊢ b == b ≺ ?M::3 == ?M::4
|
||
(line: 22: pos: 22) Type of argument 6 must be convertible to the expected type in the application of
|
||
@Trans
|
||
with arguments:
|
||
?M::1
|
||
?M::2
|
||
?M::3
|
||
?M::4
|
||
Refl a
|
||
Refl b
|
||
Assignment
|
||
⊢ a ≈ ?M::3
|
||
Destruct/Decompose
|
||
⊢ a == a ≺ ?M::2 == ?M::3
|
||
(line: 22: pos: 22) Type of argument 5 must be convertible to the expected type in the application of
|
||
@Trans
|
||
with arguments:
|
||
?M::1
|
||
?M::2
|
||
?M::3
|
||
?M::4
|
||
Refl a
|
||
Refl b
|
||
Failed to solve
|
||
⊢ (?M::1 ≈ Type) ⊕ (?M::1 ≈ Bool)
|
||
Destruct/Decompose
|
||
⊢ ?M::1 ≺ Type
|
||
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
|
||
@f
|
||
with arguments:
|
||
?M::0
|
||
Bool
|
||
Bool
|
||
Failed to solve
|
||
⊢ (?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
|
||
Destruct/Decompose
|
||
⊢ Type ≺ ?M::0
|
||
(line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
|
||
@f
|
||
with arguments:
|
||
?M::0
|
||
Bool
|
||
Bool
|
||
Failed to solve
|
||
⊢ (Type 1) ≺ Type
|
||
Substitution
|
||
⊢ (Type 1) ≺ ?M::1
|
||
Propagate type, ?M::0 : ?M::1
|
||
Assignment
|
||
⊢ ?M::0 ≈ Type
|
||
Assumption 1
|
||
Assignment
|
||
⊢ ?M::1 ≈ Type
|
||
Assumption 0
|
||
Failed to solve
|
||
⊢ (Type 2) ≺ Type
|
||
Substitution
|
||
⊢ (Type 2) ≺ ?M::1
|
||
Propagate type, ?M::0 : ?M::1
|
||
Assignment
|
||
⊢ ?M::0 ≈ (Type 1)
|
||
Assumption 2
|
||
Assignment
|
||
⊢ ?M::1 ≈ Type
|
||
Assumption 0
|
||
Failed to solve
|
||
⊢ (Type M+1) ≺ Type
|
||
Substitution
|
||
⊢ (Type M+1) ≺ ?M::1
|
||
Propagate type, ?M::0 : ?M::1
|
||
Assignment
|
||
⊢ ?M::0 ≈ (Type M)
|
||
Assumption 3
|
||
Assignment
|
||
⊢ ?M::1 ≈ Type
|
||
Assumption 0
|
||
Failed to solve
|
||
⊢ (Type U+1) ≺ Type
|
||
Substitution
|
||
⊢ (Type U+1) ≺ ?M::1
|
||
Propagate type, ?M::0 : ?M::1
|
||
Assignment
|
||
⊢ ?M::0 ≈ (Type U)
|
||
Assumption 4
|
||
Assignment
|
||
⊢ ?M::1 ≈ Type
|
||
Assumption 0
|
||
Failed to solve
|
||
⊢ (?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
|
||
Destruct/Decompose
|
||
⊢ Type ≺ ?M::0
|
||
(line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
|
||
@f
|
||
with arguments:
|
||
?M::0
|
||
Bool
|
||
Bool
|
||
Failed to solve
|
||
⊢ (Type 1) ≺ Bool
|
||
Substitution
|
||
⊢ (Type 1) ≺ ?M::1
|
||
Propagate type, ?M::0 : ?M::1
|
||
Assignment
|
||
⊢ ?M::0 ≈ Type
|
||
Assumption 6
|
||
Assignment
|
||
⊢ ?M::1 ≈ Bool
|
||
Assumption 5
|
||
Failed to solve
|
||
⊢ (Type 2) ≺ Bool
|
||
Substitution
|
||
⊢ (Type 2) ≺ ?M::1
|
||
Propagate type, ?M::0 : ?M::1
|
||
Assignment
|
||
⊢ ?M::0 ≈ (Type 1)
|
||
Assumption 7
|
||
Assignment
|
||
⊢ ?M::1 ≈ Bool
|
||
Assumption 5
|
||
Failed to solve
|
||
⊢ (Type M+1) ≺ Bool
|
||
Substitution
|
||
⊢ (Type M+1) ≺ ?M::1
|
||
Propagate type, ?M::0 : ?M::1
|
||
Assignment
|
||
⊢ ?M::0 ≈ (Type M)
|
||
Assumption 8
|
||
Assignment
|
||
⊢ ?M::1 ≈ Bool
|
||
Assumption 5
|
||
Failed to solve
|
||
⊢ (Type U+1) ≺ Bool
|
||
Substitution
|
||
⊢ (Type U+1) ≺ ?M::1
|
||
Propagate type, ?M::0 : ?M::1
|
||
Assignment
|
||
⊢ ?M::0 ≈ (Type U)
|
||
Assumption 9
|
||
Assignment
|
||
⊢ ?M::1 ≈ Bool
|
||
Assumption 5
|
||
Failed to solve
|
||
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ a
|
||
Substitution
|
||
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ ?M::5[lift:0:1]
|
||
Substitution
|
||
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ ?M::2[lift:0:2] ≺ ?M::5[lift:0:1]
|
||
Destruct/Decompose
|
||
a : Bool, b : Bool, H : ?M::2 ⊢ Π H_a : ?M::6, ?M::2[lift:0:2] ≺ Π a : ?M::3, ?M::5[lift:0:1]
|
||
(line: 27: pos: 21) Type of argument 5 must be convertible to the expected type in the application of
|
||
@DisjCases
|
||
with arguments:
|
||
?M::3
|
||
?M::4
|
||
?M::5
|
||
EM a
|
||
λ H_a : ?M::6, H
|
||
λ H_na : ?M::7, NotImp1 (MT H H_na)
|
||
Normalize assignment
|
||
?M::0
|
||
Assignment
|
||
a : Bool, b : Bool ⊢ ?M::2 ≈ ?M::0
|
||
Destruct/Decompose
|
||
a : Bool, b : Bool ⊢ Π H : ?M::2, ?M::5 ≺ Π a : ?M::0, ?M::1[lift:0:1]
|
||
(line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of
|
||
@Discharge
|
||
with arguments:
|
||
?M::0
|
||
?M::1
|
||
λ H : ?M::2, DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na))
|
||
Assignment
|
||
a : Bool, b : Bool ⊢ ?M::0 ≈ (a ⇒ b) ⇒ a
|
||
Destruct/Decompose
|
||
a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a
|
||
Destruct/Decompose
|
||
a : Bool ⊢ Π b : Bool, ?M::0 ⇒ ?M::1 ≺ Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
|
||
Destruct/Decompose
|
||
⊢ Π a b : Bool, ?M::0 ⇒ ?M::1 ≺ Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
|
||
(line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type.
|
||
Assignment
|
||
a : Bool, b : Bool, H : ?M::2 ⊢ ?M::5 ≺ a
|
||
Substitution
|
||
a : Bool, b : Bool, H : ?M::2 ⊢ ?M::5 ≺ ?M::1[lift:0:1]
|
||
Destruct/Decompose
|
||
a : Bool, b : Bool ⊢ Π H : ?M::2, ?M::5 ≺ Π a : ?M::0, ?M::1[lift:0:1]
|
||
(line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of
|
||
@Discharge
|
||
with arguments:
|
||
?M::0
|
||
?M::1
|
||
λ H : ?M::2, DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na))
|
||
Assignment
|
||
a : Bool, b : Bool ⊢ ?M::1 ≈ a
|
||
Destruct/Decompose
|
||
a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a
|
||
Destruct/Decompose
|
||
a : Bool ⊢ Π b : Bool, ?M::0 ⇒ ?M::1 ≺ Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
|
||
Destruct/Decompose
|
||
⊢ Π a b : Bool, ?M::0 ⇒ ?M::1 ≺ Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
|
||
(line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type.
|