187 lines
7.5 KiB
Text
187 lines
7.5 KiB
Text
/-
|
|
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Author: Floris van Doorn
|
|
|
|
Ported from Coq HoTT
|
|
Theorems about the types equiv and is_equiv
|
|
-/
|
|
|
|
import .fiber .arrow arity ..hprop_trunc
|
|
|
|
open eq is_trunc sigma sigma.ops pi fiber function equiv equiv.ops
|
|
|
|
namespace is_equiv
|
|
variables {A B : Type} (f : A → B) [H : is_equiv f]
|
|
include H
|
|
/- is_equiv f is a mere proposition -/
|
|
definition is_contr_fiber_of_is_equiv [instance] (b : B) : is_contr (fiber f b) :=
|
|
is_contr.mk
|
|
(fiber.mk (f⁻¹ b) (right_inv f b))
|
|
(λz, fiber.rec_on z (λa p,
|
|
fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) (calc
|
|
right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b)
|
|
: by rewrite inv_con_cancel_left
|
|
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con
|
|
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite [adj f]
|
|
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc
|
|
... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose
|
|
... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv
|
|
... = ap f ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) ⬝ p : by rewrite ap_con)))
|
|
|
|
definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g ~ id) :=
|
|
begin
|
|
fapply is_trunc_equiv_closed,
|
|
{apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy},
|
|
fapply is_trunc_equiv_closed,
|
|
{apply fiber.sigma_char},
|
|
fapply is_contr_fiber_of_is_equiv,
|
|
apply (to_is_equiv (arrow_equiv_arrow_right B (equiv.mk f H))),
|
|
end
|
|
|
|
definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g ~ id)
|
|
: is_contr (Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a)) :=
|
|
begin
|
|
fapply is_trunc_equiv_closed,
|
|
{apply equiv.symm, apply sigma_pi_equiv_pi_sigma},
|
|
fapply is_trunc_equiv_closed,
|
|
{apply pi_equiv_pi_id, intro a,
|
|
apply (fiber_eq_equiv (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))},
|
|
end
|
|
|
|
omit H
|
|
|
|
protected definition sigma_char : (is_equiv f) ≃
|
|
(Σ(g : B → A) (ε : f ∘ g ~ id) (η : g ∘ f ~ id), Π(a : A), ε (f a) = ap f (η a)) :=
|
|
equiv.MK (λH, ⟨inv f, right_inv f, left_inv f, adj f⟩)
|
|
(λp, is_equiv.mk f p.1 p.2.1 p.2.2.1 p.2.2.2)
|
|
(λp, begin
|
|
induction p with p1 p2,
|
|
induction p2 with p21 p22,
|
|
induction p22 with p221 p222,
|
|
reflexivity
|
|
end)
|
|
(λH, by induction H; reflexivity)
|
|
|
|
protected definition sigma_char' : (is_equiv f) ≃
|
|
(Σ(u : Σ(g : B → A), f ∘ g ~ id), Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a)) :=
|
|
calc
|
|
(is_equiv f) ≃
|
|
(Σ(g : B → A) (ε : f ∘ g ~ id) (η : g ∘ f ~ id), Π(a : A), ε (f a) = ap f (η a))
|
|
: is_equiv.sigma_char
|
|
... ≃ (Σ(u : Σ(g : B → A), f ∘ g ~ id), Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a))
|
|
: {sigma_assoc_equiv (λu, Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a))}
|
|
|
|
local attribute is_contr_right_inverse [instance] [priority 1600]
|
|
local attribute is_contr_right_coherence [instance] [priority 1600]
|
|
|
|
theorem is_hprop_is_equiv [instance] : is_hprop (is_equiv f) :=
|
|
is_hprop_of_imp_is_contr
|
|
(λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !is_equiv.sigma_char'))
|
|
|
|
definition inv_eq_inv {A B : Type} {f f' : A → B} {Hf : is_equiv f} {Hf' : is_equiv f'}
|
|
(p : f = f') : f⁻¹ = f'⁻¹ :=
|
|
apd011 inv p !is_hprop.elim
|
|
|
|
/- contractible fibers -/
|
|
definition is_contr_fun [reducible] (f : A → B) := Π(b : B), is_contr (fiber f b)
|
|
|
|
definition is_contr_fun_of_is_equiv [H : is_equiv f] : is_contr_fun f :=
|
|
is_contr_fiber_of_is_equiv f
|
|
|
|
definition is_hprop_is_contr_fun (f : A → B) : is_hprop (is_contr_fun f) := _
|
|
|
|
definition is_equiv_of_is_contr_fun [H : is_contr_fun f] : is_equiv f :=
|
|
adjointify _ (λb, point (center (fiber f b)))
|
|
(λb, point_eq (center (fiber f b)))
|
|
(λa, ap point (center_eq (fiber.mk a idp)))
|
|
|
|
definition is_equiv_of_imp_is_equiv (H : B → is_equiv f) : is_equiv f :=
|
|
@is_equiv_of_is_contr_fun _ _ f (λb, @is_contr_fiber_of_is_equiv _ _ _ (H b) _)
|
|
|
|
definition is_equiv_equiv_is_contr_fun : is_equiv f ≃ is_contr_fun f :=
|
|
equiv_of_is_hprop _ (λH, !is_equiv_of_is_contr_fun)
|
|
|
|
end is_equiv
|
|
|
|
namespace is_equiv
|
|
|
|
/- Theorem 4.7.7 -/
|
|
variables {A : Type} {P Q : A → Type}
|
|
variable (f : Πa, P a → Q a)
|
|
|
|
definition is_fiberwise_equiv [reducible] := Πa, is_equiv (f a)
|
|
|
|
definition is_equiv_total_of_is_fiberwise_equiv [H : is_fiberwise_equiv f] : is_equiv (total f) :=
|
|
is_equiv_sigma_functor id f
|
|
|
|
definition is_fiberwise_equiv_of_is_equiv_total [H : is_equiv (sigma_functor id f)]
|
|
: is_fiberwise_equiv f :=
|
|
begin
|
|
intro a,
|
|
apply is_equiv_of_is_contr_fun, intro q,
|
|
apply @is_contr_equiv_closed _ _ (fiber_total_equiv f q)
|
|
end
|
|
|
|
end is_equiv
|
|
|
|
namespace equiv
|
|
open is_equiv
|
|
variables {A B C : Type}
|
|
|
|
definition equiv_mk_eq {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f')
|
|
: equiv.mk f H = equiv.mk f' H' :=
|
|
apd011 equiv.mk p !is_hprop.elim
|
|
|
|
definition equiv_eq {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' :=
|
|
by (cases f; cases f'; apply (equiv_mk_eq p))
|
|
|
|
definition equiv_eq' {f f' : A ≃ B} (p : to_fun f ~ to_fun f') : f = f' :=
|
|
by apply equiv_eq;apply eq_of_homotopy p
|
|
|
|
definition trans_symm (f : A ≃ B) (g : B ≃ C) : (f ⬝e g)⁻¹ᵉ = g⁻¹ᵉ ⬝e f⁻¹ᵉ :> (C ≃ A) :=
|
|
equiv_eq idp
|
|
|
|
definition symm_symm (f : A ≃ B) : f⁻¹ᵉ⁻¹ᵉ = f :> (A ≃ B) :=
|
|
equiv_eq idp
|
|
|
|
protected definition equiv.sigma_char [constructor]
|
|
(A B : Type) : (A ≃ B) ≃ Σ(f : A → B), is_equiv f :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{intro F, exact ⟨to_fun F, to_is_equiv F⟩},
|
|
{intro p, cases p with f H, exact (equiv.mk f H)},
|
|
{intro p, cases p, exact idp},
|
|
{intro F, cases F, exact idp},
|
|
end
|
|
|
|
definition equiv_eq_char (f f' : A ≃ B) : (f = f') ≃ (to_fun f = to_fun f') :=
|
|
calc
|
|
(f = f') ≃ (to_fun !equiv.sigma_char f = to_fun !equiv.sigma_char f')
|
|
: eq_equiv_fn_eq (to_fun !equiv.sigma_char)
|
|
... ≃ ((to_fun !equiv.sigma_char f).1 = (to_fun !equiv.sigma_char f').1 ) : equiv_subtype
|
|
... ≃ (to_fun f = to_fun f') : equiv.refl
|
|
|
|
definition is_equiv_ap_to_fun (f f' : A ≃ B)
|
|
: is_equiv (ap to_fun : f = f' → to_fun f = to_fun f') :=
|
|
begin
|
|
fapply adjointify,
|
|
{intro p, cases f with f H, cases f' with f' H', cases p, apply ap (mk f'), apply is_hprop.elim},
|
|
{intro p, cases f with f H, cases f' with f' H', cases p,
|
|
apply @concat _ _ (ap to_fun (ap (equiv.mk f') (is_hprop.elim H H'))), {apply idp},
|
|
generalize is_hprop.elim H H', intro q, cases q, apply idp},
|
|
{intro p, cases p, cases f with f H, apply ap (ap (equiv.mk f)), apply is_hset.elim}
|
|
end
|
|
|
|
definition equiv_pathover {A : Type} {a a' : A} (p : a = a')
|
|
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
|
|
(r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[p] g b') : f =[p] g :=
|
|
begin
|
|
fapply change_path_equiv',
|
|
{ intro a, apply equiv.sigma_char},
|
|
{ fapply sigma_pathover,
|
|
esimp, apply arrow_pathover, exact r,
|
|
apply is_hprop.elimo}
|
|
end
|
|
|
|
end equiv
|