lean2/tests/lean/run/match3.lean

53 lines
1.1 KiB
Text

import data.list
open nat
definition foo (a : nat) : nat :=
match a with
| zero := zero
| succ n := n
end
example : foo 3 = 2 := rfl
open decidable
protected theorem dec_eq : ∀ x y : nat, decidable (x = y)
| dec_eq zero zero := inl rfl
| dec_eq (succ x) zero := inr (λ h, nat.no_confusion h)
| dec_eq zero (succ y) := inr (λ h, nat.no_confusion h)
| dec_eq (succ x) (succ y) :=
match dec_eq x y with
| inl H := inl (eq.rec_on H rfl)
| inr H := inr (λ h : succ x = succ y, nat.no_confusion h (λ heq : x = y, absurd heq H))
end
section
open list
parameter {A : Type}
parameter (p : A → Prop)
parameter [H : decidable_pred p]
include H
definition filter : list A → list A
| filter nil := nil
| filter (a :: l) :=
match H a with
| inl h := a :: filter l
| inr h := filter l
end
theorem filter_nil : filter nil = nil :=
rfl
theorem filter_cons (a : A) (l : list A) : filter (a :: l) = if p a then a :: filter l else filter l :=
rfl
end
definition sub2 (a : nat) : nat :=
match a with
| 0 := 0
| 1 := 0
| b+2 := b
end
example (a : nat) : sub2 (succ (succ a)) = a := rfl