lean2/tests/lean/run/tree.lean

62 lines
1.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import logic data.prod
open eq.ops prod
inductive tree (A : Type) :=
| leaf : A → tree A
| node : tree A → tree A → tree A
inductive one.{l} : Type.{max 1 l} :=
star : one
set_option pp.universes true
namespace tree
namespace manual
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable (C : tree A → Type.{l₂})
definition below (t : tree A) : Type :=
tree.rec_on t (λ a, one.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
end
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable {C : tree A → Type.{l₂}}
definition below_rec_on (t : tree A) (H : Π (n : tree A), below C n → C n) : C t
:= have general : C t × below C t, from
tree.rec_on t
(λa, (H (leaf a) one.star, one.star))
(λ (l r : tree A) (Hl : C l × below C l) (Hr : C r × below C r),
have b : below C (node l r), from
(pr₁ Hl, pr₁ Hr, pr₂ Hl, pr₂ Hr),
have c : C (node l r), from
H (node l r) b,
(c, b)),
pr₁ general
end
end manual
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable {C : tree A → Type.{l₂+1}}
definition below_rec_on (t : tree A) (H : Π (n : tree A), @tree.below A C n → C n) : C t
:= have general : C t × @tree.below A C t, from
tree.rec_on t
(λa, (H (leaf a) unit.star, unit.star))
(λ (l r : tree A) (Hl : C l × @tree.below A C l) (Hr : C r × @tree.below A C r),
have b : @tree.below A C (node l r), from
((pr₁ Hl, pr₂ Hl), (pr₁ Hr, pr₂ Hr)),
have c : C (node l r), from
H (node l r) b,
(c, b)),
pr₁ general
end
set_option pp.universes true
theorem leaf_ne_tree {A : Type} (a : A) (l r : tree A) : leaf a ≠ node l r :=
assume h : leaf a = node l r,
tree.no_confusion h
end tree