048151487e
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
14 lines
444 B
Text
14 lines
444 B
Text
Set: pp::colors
|
||
Set: pp::unicode
|
||
Imported 'macros'
|
||
Using: Nat
|
||
Assumed: Induction
|
||
Proved: Comm1
|
||
Proved: Comm2
|
||
theorem Comm2 : ∀ n m : ℕ, n + m = m + n :=
|
||
λ n : ℕ,
|
||
Induction
|
||
(λ x : ℕ, n + x == x + n)
|
||
(Nat::add::zeror n ⋈ symm (Nat::add::zerol n))
|
||
(λ (m : ℕ) (iH : n + m = m + n),
|
||
Nat::add::succr n m ⋈ subst (refl (n + m + 1)) iH ⋈ symm (Nat::add::succl m n))
|