lean2/hott/cubical/square.hlean
Floris van Doorn a69a4226c6 reorder arguments of definitions about squares and squareovers
This is to be consistent with the order of the type square. These arguments are mostly implicit, with as most notable exception the square(over) fillers.
2018-09-07 11:58:46 +02:00

736 lines
37 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jakob von Raumer
Squares in a type
-/
import types.eq
open eq equiv is_equiv sigma
namespace eq
variables {A B C : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A}
/-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
/-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
{p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
{b : B} {c : C}
inductive square {A : Type} {a₀₀ : A}
: Π{a₂₀ a₀₂ a₂₂ : A}, a₀₀ = a₂₀ → a₀₂ = a₂₂ → a₀₀ = a₀₂ → a₂₀ = a₂₂ → Type :=
ids : square idp idp idp idp
/- square top bottom left right -/
variables {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
definition ids [reducible] [constructor] := @square.ids
definition idsquare [reducible] [constructor] (a : A) := @square.ids A a
definition hrefl [unfold 4] (p : a = a') : square idp idp p p :=
by induction p; exact ids
definition vrefl [unfold 4] (p : a = a') : square p p idp idp :=
by induction p; exact ids
definition hrfl [reducible] [unfold 4] {p : a = a'} : square idp idp p p :=
!hrefl
definition vrfl [reducible] [unfold 4] {p : a = a'} : square p p idp idp :=
!vrefl
definition hdeg_square [unfold 6] {p q : a = a'} (r : p = q) : square idp idp p q :=
by induction r;apply hrefl
definition vdeg_square [unfold 6] {p q : a = a'} (r : p = q) : square p q idp idp :=
by induction r;apply vrefl
definition hdeg_square_idp (p : a = a') : hdeg_square (refl p) = hrfl :=
by reflexivity
definition vdeg_square_idp (p : a = a') : vdeg_square (refl p) = vrfl :=
by reflexivity
definition hconcat [unfold 16] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁)
: square (p₁₀ ⬝ p₃₀) (p₁₂ ⬝ p₃₂) p₀₁ p₄₁ :=
by induction s₃₁; exact s₁₁
definition vconcat [unfold 16] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃)
: square p₁₀ p₁₄ (p₀₁ ⬝ p₀₃) (p₂₁ ⬝ p₂₃) :=
by induction s₁₃; exact s₁₁
definition dconcat [unfold 14] {p₀₀ : a₀₀ = a} {p₂₂ : a = a₂₂}
(s₂₁ : square p₀₀ p₁₂ p₀₁ p₂₂) (s₁₂ : square p₁₀ p₂₂ p₀₀ p₂₁) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction s₁₂; exact s₂₁
definition hinverse [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀⁻¹ p₁₂⁻¹ p₂₁ p₀₁ :=
by induction s₁₁;exact ids
definition vinverse [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₂ p₁₀ p₀₁⁻¹ p₂₁⁻¹ :=
by induction s₁₁;exact ids
definition eq_vconcat [unfold 11] {p : a₀₀ = a₂₀} (r : p = p₁₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
square p p₁₂ p₀₁ p₂₁ :=
by induction r; exact s₁₁
definition vconcat_eq [unfold 12] {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p) :
square p₁₀ p p₀₁ p₂₁ :=
by induction r; exact s₁₁
definition eq_hconcat [unfold 11] {p : a₀₀ = a₀₂} (r : p = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
square p₁₀ p₁₂ p p₂₁ :=
by induction r; exact s₁₁
definition hconcat_eq [unfold 12] {p : a₂₀ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p) :
square p₁₀ p₁₂ p₀₁ p :=
by induction r; exact s₁₁
infix ` ⬝h `:69 := hconcat --type using \tr
infix ` ⬝v `:70 := vconcat --type using \tr
infixl ` ⬝hp `:71 := hconcat_eq --type using \tr
infixl ` ⬝vp `:73 := vconcat_eq --type using \tr
infixr ` ⬝ph `:72 := eq_hconcat --type using \tr
infixr ` ⬝pv `:74 := eq_vconcat --type using \tr
postfix `⁻¹ʰ`:(max+1) := hinverse --type using \-1h
postfix `⁻¹ᵛ`:(max+1) := vinverse --type using \-1v
definition transpose [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₀₁ p₂₁ p₁₀ p₁₂ :=
by induction s₁₁;exact ids
definition aps [unfold 12] (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (ap f p₁₀) (ap f p₁₂) (ap f p₀₁) (ap f p₂₁) :=
by induction s₁₁;exact ids
/- canceling, whiskering and moving thinks along the sides of the square -/
definition whisker_tl (p : a = a₀₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (p ⬝ p₁₀) p₁₂ (p ⬝ p₀₁) p₂₁ :=
by induction s₁₁;induction p;constructor
definition whisker_br (p : a₂₂ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀ (p₁₂ ⬝ p) p₀₁ (p₂₁ ⬝ p) :=
by induction p;exact s₁₁
definition whisker_rt (p : a = a₂₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (p₁₀ ⬝ p⁻¹) p₁₂ p₀₁ (p ⬝ p₂₁) :=
by induction s₁₁;induction p;constructor
definition whisker_tr (p : a₂₀ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (p₁₀ ⬝ p) p₁₂ p₀₁ (p⁻¹ ⬝ p₂₁) :=
by induction s₁₁;induction p;constructor
definition whisker_bl (p : a = a₀₂) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀ (p ⬝ p₁₂) (p₀₁ ⬝ p⁻¹) p₂₁ :=
by induction s₁₁;induction p;constructor
definition whisker_lb (p : a₀₂ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀ (p⁻¹ ⬝ p₁₂) (p₀₁ ⬝ p) p₂₁ :=
by induction s₁₁;induction p;constructor
definition cancel_tl (p : a = a₀₀) (s₁₁ : square (p ⬝ p₁₀) p₁₂ (p ⬝ p₀₁) p₂₁)
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite +idp_con at s₁₁; exact s₁₁
definition cancel_br (p : a₂₂ = a) (s₁₁ : square p₁₀ (p₁₂ ⬝ p) p₀₁ (p₂₁ ⬝ p))
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p;exact s₁₁
definition cancel_rt (p : a = a₂₀) (s₁₁ : square (p₁₀ ⬝ p⁻¹) p₁₂ p₀₁ (p ⬝ p₂₁))
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite idp_con at s₁₁; exact s₁₁
definition cancel_tr (p : a₂₀ = a) (s₁₁ : square (p₁₀ ⬝ p) p₁₂ p₀₁ (p⁻¹ ⬝ p₂₁))
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite [▸* at s₁₁,idp_con at s₁₁]; exact s₁₁
definition cancel_bl (p : a = a₀₂) (s₁₁ : square p₁₀ (p ⬝ p₁₂) (p₀₁ ⬝ p⁻¹) p₂₁)
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite idp_con at s₁₁; exact s₁₁
definition cancel_lb (p : a₀₂ = a) (s₁₁ : square p₁₀ (p⁻¹ ⬝ p₁₂) (p₀₁ ⬝ p) p₂₁)
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite [▸* at s₁₁,idp_con at s₁₁]; exact s₁₁
definition move_top_of_left {p : a₀₀ = a} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p ⬝ q) p₂₁)
: square (p⁻¹ ⬝ p₁₀) p₁₂ q p₂₁ :=
by apply cancel_tl p; rewrite con_inv_cancel_left; exact s
definition move_top_of_left' {p : a = a₀₀} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p⁻¹ ⬝ q) p₂₁)
: square (p ⬝ p₁₀) p₁₂ q p₂₁ :=
by apply cancel_tl p⁻¹; rewrite inv_con_cancel_left; exact s
definition move_left_of_top {p : a₀₀ = a} {q : a = a₂₀} (s : square (p ⬝ q) p₁₂ p₀₁ p₂₁)
: square q p₁₂ (p⁻¹ ⬝ p₀₁) p₂₁ :=
by apply cancel_tl p; rewrite con_inv_cancel_left; exact s
definition move_left_of_top' {p : a = a₀₀} {q : a = a₂₀} (s : square (p⁻¹ ⬝ q) p₁₂ p₀₁ p₂₁)
: square q p₁₂ (p ⬝ p₀₁) p₂₁ :=
by apply cancel_tl p⁻¹; rewrite inv_con_cancel_left; exact s
definition move_bot_of_right {p : a₂₀ = a} {q : a = a₂₂} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q))
: square p₁₀ (p₁₂ ⬝ q⁻¹) p₀₁ p :=
by apply cancel_br q; rewrite inv_con_cancel_right; exact s
definition move_bot_of_right' {p : a₂₀ = a} {q : a₂₂ = a} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q⁻¹))
: square p₁₀ (p₁₂ ⬝ q) p₀₁ p :=
by apply cancel_br q⁻¹; rewrite con_inv_cancel_right; exact s
definition move_right_of_bot {p : a₀₂ = a} {q : a = a₂₂} (s : square p₁₀ (p ⬝ q) p₀₁ p₂₁)
: square p₁₀ p p₀₁ (p₂₁ ⬝ q⁻¹) :=
by apply cancel_br q; rewrite inv_con_cancel_right; exact s
definition move_right_of_bot' {p : a₀₂ = a} {q : a₂₂ = a} (s : square p₁₀ (p ⬝ q⁻¹) p₀₁ p₂₁)
: square p₁₀ p p₀₁ (p₂₁ ⬝ q) :=
by apply cancel_br q⁻¹; rewrite con_inv_cancel_right; exact s
definition move_top_of_right {p : a₂₀ = a} {q : a = a₂₂} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q))
: square (p₁₀ ⬝ p) p₁₂ p₀₁ q :=
by apply cancel_rt p; rewrite con_inv_cancel_right; exact s
definition move_right_of_top {p : a₀₀ = a} {q : a = a₂₀} (s : square (p ⬝ q) p₁₂ p₀₁ p₂₁)
: square p p₁₂ p₀₁ (q ⬝ p₂₁) :=
by apply cancel_tr q; rewrite inv_con_cancel_left; exact s
definition move_bot_of_left {p : a₀₀ = a} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p ⬝ q) p₂₁)
: square p₁₀ (q ⬝ p₁₂) p p₂₁ :=
by apply cancel_lb q; rewrite inv_con_cancel_left; exact s
definition move_left_of_bot {p : a₀₂ = a} {q : a = a₂₂} (s : square p₁₀ (p ⬝ q) p₀₁ p₂₁)
: square p₁₀ q (p₀₁ ⬝ p) p₂₁ :=
by apply cancel_bl p; rewrite con_inv_cancel_right; exact s
/- some higher ∞-groupoid operations -/
definition vconcat_vrfl (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: s₁₁ ⬝v vrefl p₁₂ = s₁₁ :=
by induction s₁₁; reflexivity
definition hconcat_hrfl (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: s₁₁ ⬝h hrefl p₂₁ = s₁₁ :=
by induction s₁₁; reflexivity
/- equivalences -/
definition eq_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂ :=
by induction s₁₁; apply idp
definition square_of_eq (r : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p₁₂; esimp at r; induction r; induction p₂₁; induction p₁₀; exact ids
definition eq_top_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹ :=
by induction s₁₁; apply idp
definition square_of_eq_top (r : p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p₂₁; induction p₁₂; esimp at r;induction r;induction p₁₀;exact ids
definition eq_bot_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ :=
by induction s₁₁; apply idp
definition square_of_eq_bot (r : p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ = p₁₂) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p₂₁; induction p₁₀; esimp at r; induction r; induction p₀₁; exact ids
definition square_equiv_eq [constructor] (t : a₀₀ = a₀₂) (b : a₂₀ = a₂₂)
(l : a₀₀ = a₂₀) (r : a₀₂ = a₂₂) : square t b l r ≃ t ⬝ r = l ⬝ b :=
begin
fapply equiv.MK,
{ exact eq_of_square},
{ exact square_of_eq},
{ intro s, induction b, esimp [concat] at s, induction s, induction r, induction t, apply idp},
{ intro s, induction s, apply idp},
end
definition hdeg_square_equiv' [constructor] (p q : a = a') : square idp idp p q ≃ p = q :=
by transitivity _;apply square_equiv_eq;transitivity _;apply eq_equiv_eq_symm;
apply equiv_eq_closed_right;apply idp_con
definition vdeg_square_equiv' [constructor] (p q : a = a') : square p q idp idp ≃ p = q :=
by transitivity _;apply square_equiv_eq;apply equiv_eq_closed_right; apply idp_con
definition eq_of_hdeg_square [reducible] {p q : a = a'} (s : square idp idp p q) : p = q :=
to_fun !hdeg_square_equiv' s
definition eq_of_vdeg_square [reducible] {p q : a = a'} (s : square p q idp idp) : p = q :=
to_fun !vdeg_square_equiv' s
definition top_deg_square (l : a₁ = a₂) (b : a₂ = a₃) (r : a₄ = a₃)
: square (l ⬝ b ⬝ r⁻¹) b l r :=
by induction r;induction b;induction l;constructor
definition bot_deg_square (l : a₁ = a₂) (t : a₁ = a₃) (r : a₃ = a₄)
: square t (l⁻¹ ⬝ t ⬝ r) l r :=
by induction r;induction t;induction l;constructor
/-
the following two equivalences have as underlying inverse function the functions
hdeg_square and vdeg_square, respectively.
See example below the definition
-/
definition hdeg_square_equiv [constructor] (p q : a = a') :
square idp idp p q ≃ p = q :=
begin
fapply equiv_change_fun,
{ fapply equiv_change_inv, apply hdeg_square_equiv', exact hdeg_square,
intro s, induction s, induction p, reflexivity},
{ exact eq_of_hdeg_square},
{ reflexivity}
end
definition vdeg_square_equiv [constructor] (p q : a = a') :
square p q idp idp ≃ p = q :=
begin
fapply equiv_change_fun,
{ fapply equiv_change_inv, apply vdeg_square_equiv',exact vdeg_square,
intro s, induction s, induction p, reflexivity},
{ exact eq_of_vdeg_square},
{ reflexivity}
end
example (p q : a = a') : to_inv (hdeg_square_equiv p q) = hdeg_square := idp
/-
characterization of pathovers in a equality type. The type B of the equality is fixed here.
A version where B may also varies over the path p is given in the file squareover
-/
definition eq_pathover [unfold 7] {f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'}
(s : square q r (ap f p) (ap g p)) : q =[p] r :=
begin induction p, apply pathover_idp_of_eq, exact eq_of_vdeg_square s end
definition eq_pathover_constant_left {g : A → B} {p : a = a'} {b : B} {q : b = g a} {r : b = g a'}
(s : square q r idp (ap g p)) : q =[p] r :=
eq_pathover (ap_constant p b ⬝ph s)
definition eq_pathover_id_left {g : A → A} {p : a = a'} {q : a = g a} {r : a' = g a'}
(s : square q r p (ap g p)) : q =[p] r :=
eq_pathover (ap_id p ⬝ph s)
definition eq_pathover_constant_right {f : A → B} {p : a = a'} {b : B} {q : f a = b} {r : f a' = b}
(s : square q r (ap f p) idp) : q =[p] r :=
eq_pathover (s ⬝hp (ap_constant p b)⁻¹)
definition eq_pathover_id_right {f : A → A} {p : a = a'} {q : f a = a} {r : f a' = a'}
(s : square q r (ap f p) p) : q =[p] r :=
eq_pathover (s ⬝hp (ap_id p)⁻¹)
definition square_of_pathover [unfold 7]
{f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'}
(s : q =[p] r) : square q r (ap f p) (ap g p) :=
by induction p;apply vdeg_square;exact eq_of_pathover_idp s
definition eq_pathover_constant_left_id_right {p : a = a'} {a₀ : A} {q : a₀ = a} {r : a₀ = a'}
(s : square q r idp p) : q =[p] r :=
eq_pathover (ap_constant p a₀ ⬝ph s ⬝hp (ap_id p)⁻¹)
definition eq_pathover_id_left_constant_right {p : a = a'} {a₀ : A} {q : a = a₀} {r : a' = a₀}
(s : square q r p idp) : q =[p] r :=
eq_pathover (ap_id p ⬝ph s ⬝hp (ap_constant p a₀)⁻¹)
definition loop_pathover {p : a = a'} {q : a = a} {r : a' = a'} (s : square q r p p) : q =[p] r :=
eq_pathover (ap_id p ⬝ph s ⬝hp (ap_id p)⁻¹)
/- interaction of equivalences with operations on squares -/
definition eq_pathover_equiv_square [constructor] {f g : A → B}
(p : a = a') (q : f a = g a) (r : f a' = g a') : q =[p] r ≃ square q r (ap f p) (ap g p) :=
equiv.MK square_of_pathover
eq_pathover
begin
intro s, induction p, esimp [square_of_pathover,eq_pathover],
exact ap vdeg_square (to_right_inv !pathover_idp (eq_of_vdeg_square s))
⬝ to_left_inv !vdeg_square_equiv s
end
begin
intro s, induction p, esimp [square_of_pathover,eq_pathover],
exact ap pathover_idp_of_eq (to_right_inv !vdeg_square_equiv (eq_of_pathover_idp s))
⬝ to_left_inv !pathover_idp s
end
definition square_of_pathover_eq_concato {f g : A → B} {p : a = a'} {q q' : f a = g a}
{r : f a' = g a'} (s' : q = q') (s : q' =[p] r)
: square_of_pathover (s' ⬝po s) = s' ⬝pv square_of_pathover s :=
by induction s;induction s';reflexivity
definition square_of_pathover_concato_eq {f g : A → B} {p : a = a'} {q : f a = g a}
{r r' : f a' = g a'} (s' : r = r') (s : q =[p] r)
: square_of_pathover (s ⬝op s') = square_of_pathover s ⬝vp s' :=
by induction s;induction s';reflexivity
definition square_of_pathover_concato {f g : A → B} {p : a = a'} {p' : a' = a''} {q : f a = g a}
{q' : f a' = g a'} {q'' : f a'' = g a''} (s : q =[p] q') (s' : q' =[p'] q'')
: square_of_pathover (s ⬝o s')
= ap_con f p p' ⬝ph (square_of_pathover s ⬝v square_of_pathover s') ⬝hp (ap_con g p p')⁻¹ :=
by induction s';induction s;esimp [ap_con,hconcat_eq];exact !vconcat_vrfl⁻¹
definition eq_of_square_hrfl [unfold 4] (p : a = a') : eq_of_square hrfl = idp_con p :=
by induction p;reflexivity
definition eq_of_square_vrfl [unfold 4] (p : a = a') : eq_of_square vrfl = (idp_con p)⁻¹ :=
by induction p;reflexivity
definition eq_of_square_hdeg_square {p q : a = a'} (r : p = q)
: eq_of_square (hdeg_square r) = !idp_con ⬝ r⁻¹ :=
by induction r;induction p;reflexivity
definition eq_of_square_vdeg_square {p q : a = a'} (r : p = q)
: eq_of_square (vdeg_square r) = r ⬝ !idp_con⁻¹ :=
by induction r;induction p;reflexivity
definition eq_of_square_eq_vconcat {p : a₀₀ = a₂₀} (r : p = p₁₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: eq_of_square (r ⬝pv s₁₁) = whisker_right p₂₁ r ⬝ eq_of_square s₁₁ :=
by induction s₁₁;cases r;reflexivity
definition eq_of_square_eq_hconcat {p : a₀₀ = a₀₂} (r : p = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: eq_of_square (r ⬝ph s₁₁) = eq_of_square s₁₁ ⬝ (whisker_right p₁₂ r)⁻¹ :=
by induction r;reflexivity
definition eq_of_square_vconcat_eq {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p)
: eq_of_square (s₁₁ ⬝vp r) = eq_of_square s₁₁ ⬝ whisker_left p₀₁ r :=
by induction r;reflexivity
definition eq_of_square_hconcat_eq {p : a₂₀ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p)
: eq_of_square (s₁₁ ⬝hp r) = (whisker_left p₁₀ r)⁻¹ ⬝ eq_of_square s₁₁ :=
by induction s₁₁; induction r;reflexivity
definition change_path_eq_pathover {A B : Type} {a a' : A} {f g : A → B}
{p p' : a = a'} (r : p = p')
{q : f a = g a} {q' : f a' = g a'}
(s : square q q' (ap f p) (ap g p)) :
change_path r (eq_pathover s) = eq_pathover ((ap02 f r)⁻¹ ⬝ph s ⬝hp (ap02 g r)) :=
by induction r; reflexivity
definition eq_hconcat_hdeg_square {A : Type} {a a' : A} {p₁ p₂ p₃ : a = a'} (q₁ : p₁ = p₂)
(q₂ : p₂ = p₃) : q₁ ⬝ph hdeg_square q₂ = hdeg_square (q₁ ⬝ q₂) :=
by induction q₁; induction q₂; reflexivity
definition hdeg_square_hconcat_eq {A : Type} {a a' : A} {p₁ p₂ p₃ : a = a'} (q₁ : p₁ = p₂)
(q₂ : p₂ = p₃) : hdeg_square q₁ ⬝hp q₂ = hdeg_square (q₁ ⬝ q₂) :=
by induction q₁; induction q₂; reflexivity
definition eq_hconcat_eq_hdeg_square {A : Type} {a a' : A} {p₁ p₂ p₃ p₄ : a = a'} (q₁ : p₁ = p₂)
(q₂ : p₂ = p₃) (q₃ : p₃ = p₄) : q₁ ⬝ph hdeg_square q₂ ⬝hp q₃ = hdeg_square (q₁ ⬝ q₂ ⬝ q₃) :=
by induction q₃; apply eq_hconcat_hdeg_square
-- definition vconcat_eq [unfold 11] {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p) :
-- square p₁₀ p p₀₁ p₂₁ :=
-- by induction r; exact s₁₁
-- definition eq_hconcat [unfold 11] {p : a₀₀ = a₀₂} (r : p = p₀₁)
-- (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀ p₁₂ p p₂₁ :=
-- by induction r; exact s₁₁
-- definition hconcat_eq [unfold 11] {p : a₂₀ = a₂₂}
-- (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p) : square p₁₀ p₁₂ p₀₁ p :=
-- by induction r; exact s₁₁
-- the following definition is very slow, maybe it's interesting to see why?
-- definition eq_pathover_equiv_square' {f g : A → B}(p : a = a') (q : f a = g a) (r : f a' = g a')
-- : square q r (ap f p) (ap g p) ≃ q =[p] r :=
-- equiv.MK eq_pathover
-- square_of_pathover
-- (λs, begin
-- induction p, rewrite [↑[square_of_pathover,eq_pathover],
-- to_right_inv !vdeg_square_equiv (eq_of_pathover_idp s),
-- to_left_inv !pathover_idp s]
-- end)
-- (λs, begin
-- induction p, rewrite [↑[square_of_pathover,eq_pathover],▸*,
-- to_right_inv !(@pathover_idp A) (eq_of_vdeg_square s),
-- to_left_inv !vdeg_square_equiv s]
-- end)
/- recursors for squares where some sides are reflexivity -/
definition rec_on_b [recursor] {a₀₀ : A}
{P : Π{a₂₀ a₁₂ : A} {t : a₀₀ = a₂₀} {l : a₀₀ = a₁₂} {r : a₂₀ = a₁₂}, square t idp l r → Type}
{a₂₀ a₁₂ : A} {t : a₀₀ = a₂₀} {l : a₀₀ = a₁₂} {r : a₂₀ = a₁₂}
(s : square t idp l r) (H : P ids) : P s :=
have H2 : P (square_of_eq (eq_of_square s)),
from eq.rec_on (eq_of_square s : t ⬝ r = l) (by induction r; induction t; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ H2
definition rec_on_r [recursor] {a₀₀ : A}
{P : Π{a₀₂ a₂₁ : A} {t : a₀₀ = a₂₁} {b : a₀₂ = a₂₁} {l : a₀₀ = a₀₂}, square t b l idp → Type}
{a₀₂ a₂₁ : A} {t : a₀₀ = a₂₁} {b : a₀₂ = a₂₁} {l : a₀₀ = a₀₂}
(s : square t b l idp) (H : P ids) : P s :=
let p : l ⬝ b = t := (eq_of_square s)⁻¹ in
have H2 : P (square_of_eq (eq_of_square s)⁻¹⁻¹),
from @eq.rec_on _ _ (λx p, P (square_of_eq p⁻¹)) _ p (by induction b; induction l; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ !inv_inv ▸ H2
definition rec_on_l [recursor] {a₀₁ : A}
{P : Π {a₂₀ a₂₂ : A} {t : a₀₁ = a₂₀} {b : a₀₁ = a₂₂} {r : a₂₀ = a₂₂},
square t b idp r → Type}
{a₂₀ a₂₂ : A} {t : a₀₁ = a₂₀} {b : a₀₁ = a₂₂} {r : a₂₀ = a₂₂}
(s : square t b idp r) (H : P ids) : P s :=
let p : t ⬝ r = b := eq_of_square s ⬝ !idp_con in
have H2 : P (square_of_eq (p ⬝ !idp_con⁻¹)),
from eq.rec_on p (by induction r; induction t; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ !con_inv_cancel_right ▸ H2
definition rec_on_t [recursor] {a₁₀ : A}
{P : Π {a₀₂ a₂₂ : A} {b : a₀₂ = a₂₂} {l : a₁₀ = a₀₂} {r : a₁₀ = a₂₂}, square idp b l r → Type}
{a₀₂ a₂₂ : A} {b : a₀₂ = a₂₂} {l : a₁₀ = a₀₂} {r : a₁₀ = a₂₂}
(s : square idp b l r) (H : P ids) : P s :=
let p : l ⬝ b = r := (eq_of_square s)⁻¹ ⬝ !idp_con in
have H2 : P (square_of_eq ((p ⬝ !idp_con⁻¹)⁻¹)),
from eq.rec_on p (by induction b; induction l; exact H),
have H3 : P (square_of_eq ((eq_of_square s)⁻¹⁻¹)),
from eq.rec_on !con_inv_cancel_right H2,
have H4 : P (square_of_eq (eq_of_square s)),
from eq.rec_on !inv_inv H3,
proof
left_inv (to_fun !square_equiv_eq) s ▸ H4
qed
definition rec_on_tb [recursor] {a : A}
{P : Π{b : A} {l : a = b} {r : a = b}, square idp idp l r → Type}
{b : A} {l : a = b} {r : a = b}
(s : square idp idp l r) (H : P ids) : P s :=
have H2 : P (square_of_eq (eq_of_square s)),
from eq.rec_on (eq_of_square s : idp ⬝ r = l) (by induction r; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ H2
definition rec_on_lr [recursor] {a : A}
{P : Π{a' : A} {t : a = a'} {b : a = a'}, square t b idp idp → Type}
{a' : A} {t : a = a'} {b : a = a'}
(s : square t b idp idp) (H : P ids) : P s :=
let p : idp ⬝ b = t := (eq_of_square s)⁻¹ in
have H2 : P (square_of_eq (eq_of_square s)⁻¹⁻¹),
from @eq.rec_on _ _ (λx q, P (square_of_eq q⁻¹)) _ p (by induction b; exact H),
to_left_inv (!square_equiv_eq) s ▸ !inv_inv ▸ H2
--we can also do the other recursors (tl, tr, bl, br, tbl, tbr, tlr, blr), but let's postpone this until they are needed
definition whisker_square [unfold 14 15 16 17] (r₁₀ : p₁₀ = p₁₀') (r₁₂ : p₁₂ = p₁₂')
(r₀₁ : p₀₁ = p₀₁') (r₂₁ : p₂₁ = p₂₁') (s : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀' p₁₂' p₀₁' p₂₁' :=
by induction r₁₀; induction r₁₂; induction r₀₁; induction r₂₁; exact s
/- squares commute with some operations on 2-paths -/
definition square_inv2 {p₁ p₂ p₃ p₄ : a = a'}
{t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄} (s : square t b l r)
: square (inverse2 t) (inverse2 b) (inverse2 l) (inverse2 r) :=
by induction s;constructor
definition square_con2 {p₁ p₂ p₃ p₄ : a₁ = a₂} {q₁ q₂ q₃ q₄ : a₂ = a₃}
{t₁ : p₁ = p₂} {b₁ : p₃ = p₄} {l₁ : p₁ = p₃} {r₁ : p₂ = p₄}
{t₂ : q₁ = q₂} {b₂ : q₃ = q₄} {l₂ : q₁ = q₃} {r₂ : q₂ = q₄}
(s₁ : square t₁ b₁ l₁ r₁) (s₂ : square t₂ b₂ l₂ r₂)
: square (t₁ ◾ t₂) (b₁ ◾ b₂) (l₁ ◾ l₂) (r₁ ◾ r₂) :=
by induction s₂;induction s₁;constructor
open is_trunc
definition is_set.elims [H : is_set A] : square p₁₀ p₁₂ p₀₁ p₂₁ :=
square_of_eq !is_set.elim
definition is_trunc_square [instance] (n : trunc_index) [H : is_trunc n .+2 A]
: is_trunc n (square p₁₀ p₁₂ p₀₁ p₂₁) :=
is_trunc_equiv_closed_rev n !square_equiv_eq
-- definition square_of_con_inv_hsquare {p₁ p₂ p₃ p₄ : a₁ = a₂}
-- {t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄}
-- (s : square (con_inv_eq_idp t) (con_inv_eq_idp b) (l ◾ r⁻²) idp)
-- : square t b l r :=
-- sorry --by induction s
/- Square fillers -/
-- TODO replace by "more algebraic" fillers?
variables (p₁₀ p₁₂ p₀₁ p₂₁)
definition square_fill_t : Σ (p : a₀₀ = a₂₀), square p p₁₂ p₀₁ p₂₁ :=
by induction p₀₁; induction p₂₁; exact ⟨_, !vrefl⟩
definition square_fill_b : Σ (p : a₀₂ = a₂₂), square p₁₀ p p₀₁ p₂₁ :=
by induction p₀₁; induction p₂₁; exact ⟨_, !vrefl⟩
definition square_fill_l : Σ (p : a₀₀ = a₀₂), square p₁₀ p₁₂ p p₂₁ :=
by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩
definition square_fill_r : Σ (p : a₂₀ = a₂₂) , square p₁₀ p₁₂ p₀₁ p :=
by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩
variables {p₁₀ p₁₂ p₀₁ p₂₁}
/- Squares having an 'ap' term on one face -/
--TODO find better names
definition square_Flr_ap_idp {c : B} {f : A → B} (p : Π a, f a = c)
{a b : A} (q : a = b) : square (p a) (p b) (ap f q) idp :=
by induction q; apply vrfl
definition square_Flr_idp_ap {c : B} {f : A → B} (p : Π a, c = f a)
{a b : A} (q : a = b) : square (p a) (p b) idp (ap f q) :=
by induction q; apply vrfl
definition square_ap_idp_Flr {b : B} {f : A → B} (p : Π a, f a = b)
{a b : A} (q : a = b) : square (ap f q) idp (p a) (p b) :=
by induction q; apply hrfl
/- Matching eq_hconcat with hconcat etc. -/
-- TODO maybe rename hconcat_eq and the like?
variable (s₁₁)
definition ph_eq_pv_h_vp {p : a₀₀ = a₀₂} (r : p = p₀₁) :
r ⬝ph s₁₁ = !idp_con⁻¹ ⬝pv ((hdeg_square r) ⬝h s₁₁) ⬝vp !idp_con :=
by cases r; cases s₁₁; esimp
definition hdeg_h_eq_pv_ph_vp {p : a₀₀ = a₀₂} (r : p = p₀₁) :
hdeg_square r ⬝h s₁₁ = !idp_con ⬝pv (r ⬝ph s₁₁) ⬝vp !idp_con⁻¹ :=
by cases r; cases s₁₁; esimp
definition hp_eq_h {p : a₂₀ = a₂₂} (r : p₂₁ = p) :
s₁₁ ⬝hp r = s₁₁ ⬝h hdeg_square r :=
by cases r; cases s₁₁; esimp
definition pv_eq_ph_vdeg_v_vh {p : a₀₀ = a₂₀} (r : p = p₁₀) :
r ⬝pv s₁₁ = !idp_con⁻¹ ⬝ph ((vdeg_square r) ⬝v s₁₁) ⬝hp !idp_con :=
by cases r; cases s₁₁; esimp
definition vdeg_v_eq_ph_pv_hp {p : a₀₀ = a₂₀} (r : p = p₁₀) :
vdeg_square r ⬝v s₁₁ = !idp_con ⬝ph (r ⬝pv s₁₁) ⬝hp !idp_con⁻¹ :=
by cases r; cases s₁₁; esimp
definition vp_eq_v {p : a₀₂ = a₂₂} (r : p₁₂ = p) :
s₁₁ ⬝vp r = s₁₁ ⬝v vdeg_square r :=
by cases r; cases s₁₁; esimp
definition natural_square [unfold 8] {f g : A → B} (p : f ~ g) (q : a = a') :
square (p a) (p a') (ap f q) (ap g q) :=
square_of_pathover (apd p q)
definition natural_square_tr [unfold 8] {f g : A → B} (p : f ~ g) (q : a = a') :
square (ap f q) (ap g q) (p a) (p a') :=
transpose (natural_square p q)
definition natural_square011 {A A' : Type} {B : A → Type}
{a a' : A} {p : a = a'} {b : B a} {b' : B a'} (q : b =[p] b')
{l r : Π⦃a⦄, B a → A'} (g : Π⦃a⦄ (b : B a), l b = r b)
: square (apd011 l p q) (apd011 r p q) (g b) (g b') :=
begin
induction q, exact hrfl
end
definition natural_square0111' {A A' : Type} {B : A → Type} (C : Π⦃a⦄, B a → Type)
{a a' : A} {p : a = a'} {b : B a} {b' : B a'} {q : b =[p] b'}
{c : C b} {c' : C b'} (s : c =[apd011 C p q] c')
{l r : Π⦃a⦄ {b : B a}, C b → A'}
(g : Π⦃a⦄ {b : B a} (c : C b), l c = r c)
: square (apd0111 l p q s) (apd0111 r p q s) (g c) (g c') :=
begin
induction q, esimp at s, induction s using idp_rec_on, exact hrfl
end
-- this can be generalized a bit, by making the domain and codomain of k different, and also have
-- a function at the RHS of s (similar to m)
definition natural_square0111 {A A' : Type} {B : A → Type} (C : Π⦃a⦄, B a → Type)
{a a' : A} {p : a = a'} {b : B a} {b' : B a'} {q : b =[p] b'}
{c : C b} {c' : C b'} (r : c =[apd011 C p q] c')
{k : A → A} {l : Π⦃a⦄, B a → B (k a)} (m : Π⦃a⦄ {b : B a}, C b → C (l b))
{f : Π⦃a⦄ {b : B a}, C b → A'}
(s : Π⦃a⦄ {b : B a} (c : C b), f (m c) = f c)
: square (apd0111 (λa b c, f (m c)) p q r) (apd0111 f p q r) (s c) (s c') :=
begin
induction q, esimp at r, induction r using idp_rec_on, exact hrfl
end
/- some higher coherence conditions -/
theorem whisker_bl_whisker_tl_eq (p : a = a')
: whisker_bl p (whisker_tl p ids) = con.right_inv p ⬝ph vrfl :=
by induction p; reflexivity
theorem ap_is_constant_natural_square {g : B → C} {f : A → B} (H : Πa, g (f a) = c) (p : a = a') :
(ap_is_constant H p)⁻¹ ⬝ph natural_square H p ⬝hp ap_constant p c =
whisker_bl (H a') (whisker_tl (H a) ids) :=
begin induction p, esimp, rewrite inv_inv, rewrite whisker_bl_whisker_tl_eq end
definition inv_ph_eq_of_eq_ph {p : a₀₀ = a₀₂} {r : p₀₁ = p} {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁}
{s₁₁' : square p₁₀ p₁₂ p p₂₁} (t : s₁₁ = r ⬝ph s₁₁') : r⁻¹ ⬝ph s₁₁ = s₁₁' :=
by induction r; exact t
-- the following is used for torus.elim_surf
theorem whisker_square_aps_eq {f : A → B}
{q₁₀ : f a₀₀ = f a₂₀} {q₀₁ : f a₀₀ = f a₀₂} {q₂₁ : f a₂₀ = f a₂₂} {q₁₂ : f a₀₂ = f a₂₂}
{r₁₀ : ap f p₁₀ = q₁₀} {r₀₁ : ap f p₀₁ = q₀₁} {r₂₁ : ap f p₂₁ = q₂₁} {r₁₂ : ap f p₁₂ = q₁₂}
{s₁₁ : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂} {t₁₁ : square q₁₀ q₁₂ q₀₁ q₂₁}
(u : square (ap02 f s₁₁) (eq_of_square t₁₁)
(ap_con f p₁₀ p₂₁ ⬝ (r₁₀ ◾ r₂₁)) (ap_con f p₀₁ p₁₂ ⬝ (r₀₁ ◾ r₁₂)))
: whisker_square r₁₀ r₁₂ r₀₁ r₂₁ (aps f (square_of_eq s₁₁)) = t₁₁ :=
begin
induction r₁₀, induction r₀₁, induction r₁₂, induction r₂₁,
induction p₁₂, induction p₁₀, induction p₂₁, esimp at *, induction s₁₁, esimp at *,
esimp [square_of_eq],
apply eq_of_fn_eq_fn !square_equiv_eq, esimp,
exact (eq_bot_of_square u)⁻¹
end
definition natural_square_eq {A B : Type} {a a' : A} {f g : A → B} (p : f ~ g) (q : a = a')
: natural_square p q = square_of_pathover (apd p q) :=
idp
definition eq_of_square_hrfl_hconcat_eq {A : Type} {a a' : A} {p p' : a = a'} (q : p = p')
: eq_of_square (hrfl ⬝hp q⁻¹) = !idp_con ⬝ q :=
by induction q; induction p; reflexivity
definition aps_vrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
aps f (vrefl p) = vrefl (ap f p) :=
by induction p; reflexivity
definition aps_hrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
aps f (hrefl p) = hrefl (ap f p) :=
by induction p; reflexivity
-- should the following two equalities be cubes?
definition natural_square_ap_fn {A B C : Type} {a a' : A} {g h : A → B} (f : B → C) (p : g ~ h)
(q : a = a') : natural_square (λa, ap f (p a)) q =
ap_compose f g q ⬝ph (aps f (natural_square p q) ⬝hp (ap_compose f h q)⁻¹) :=
begin
induction q, exact !aps_vrfl⁻¹
end
definition natural_square_compose {A B C : Type} {a a' : A} {g g' : B → C}
(p : g ~ g') (f : A → B) (q : a = a') : natural_square (λa, p (f a)) q =
ap_compose g f q ⬝ph (natural_square p (ap f q) ⬝hp (ap_compose g' f q)⁻¹) :=
by induction q; reflexivity
definition natural_square_eq2 {A B : Type} {a a' : A} {f f' : A → B} (p : f ~ f') {q q' : a = a'}
(r : q = q') : natural_square p q = ap02 f r ⬝ph (natural_square p q' ⬝hp (ap02 f' r)⁻¹) :=
by induction r; reflexivity
definition natural_square_refl {A B : Type} {a a' : A} (f : A → B) (q : a = a')
: natural_square (homotopy.refl f) q = hrfl :=
by induction q; reflexivity
definition aps_eq_hconcat {p₀₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
aps f (q ⬝ph s₁₁) = ap02 f q ⬝ph aps f s₁₁ :=
by induction q; reflexivity
definition aps_hconcat_eq {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁' = p₂₁) :
aps f (s₁₁ ⬝hp r⁻¹) = aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
by induction r; reflexivity
definition aps_hconcat_eq' {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p₂₁') :
aps f (s₁₁ ⬝hp r) = aps f s₁₁ ⬝hp ap02 f r :=
by induction r; reflexivity
definition aps_square_of_eq (f : A → B) (s : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) :
aps f (square_of_eq s) = square_of_eq ((ap_con f p₁₀ p₂₁)⁻¹ ⬝ ap02 f s ⬝ ap_con f p₀₁ p₁₂) :=
by induction p₁₂; esimp at *; induction s; induction p₂₁; induction p₁₀; reflexivity
definition aps_eq_hconcat_eq {p₀₁' p₂₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
(r : p₂₁' = p₂₁) : aps f (q ⬝ph s₁₁ ⬝hp r⁻¹) = ap02 f q ⬝ph aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
by induction q; induction r; reflexivity
definition eq_hconcat_equiv [constructor] {p : a₀₀ = a₀₂} (r : p = p₀₁) :
square p₁₀ p₁₂ p p₂₁ ≃ square p₁₀ p₁₂ p₀₁ p₂₁ :=
equiv.MK (eq_hconcat r⁻¹) (eq_hconcat r)
begin intro s, induction r, reflexivity end begin intro s, induction r, reflexivity end
definition hconcat_eq_equiv [constructor] {p : a₂₀ = a₂₂} (r : p₂₁ = p) :
square p₁₀ p₁₂ p₀₁ p₂₁ ≃ square p₁₀ p₁₂ p₀₁ p :=
equiv.MK (λs, hconcat_eq s r) (λs, hconcat_eq s r⁻¹)
begin intro s, induction r, reflexivity end begin intro s, induction r, reflexivity end
end eq