lean2/hott/homotopy/wedge.hlean
Floris van Doorn ddef24223b make pointed suspensions, wedges and spheres the default (in contrast to the unpointed ones), remove sphere_index
All HITs which automatically have a point are pointed without a 'p' in front. HITs which do not automatically have a point do still have a p (e.g. pushout/ppushout).

There were a lot of annoyances with spheres being indexed by N_{-1} with almost no extra generality. We now index the spheres by nat, making sphere 0 = pbool.
2017-07-20 15:02:09 +01:00

115 lines
4.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Ulrik Buchholtz
The Wedge Sum of Two Pointed Types
-/
import hit.pushout .connectedness types.unit
open eq pushout pointed unit trunc_index
definition wedge' (A B : Type*) : Type := ppushout (pconst punit A) (pconst punit B)
local attribute wedge' [reducible]
definition wedge [constructor] (A B : Type*) : Type* := pointed.mk' (wedge' A B)
infixr ` ` := wedge
namespace wedge
protected definition glue {A B : Type*} : inl pt = inr pt :> wedge A B :=
pushout.glue ⋆
protected definition rec {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x))
(Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) wedge.glue (Pinr pt))
(y : wedge' A B) : P y :=
by induction y; apply Pinl; apply Pinr; induction x; exact Pglue
protected definition elim {A B : Type*} {P : Type} (Pinl : A → P)
(Pinr : B → P) (Pglue : Pinl pt = Pinr pt) (y : wedge' A B) : P :=
by induction y with a b x; exact Pinl a; exact Pinr b; induction x; exact Pglue
protected definition rec_glue {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x))
(Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) wedge.glue (Pinr pt)) :
apd (wedge.rec Pinl Pinr Pglue) wedge.glue = Pglue :=
!pushout.rec_glue
protected definition elim_glue {A B : Type*} {P : Type} (Pinl : A → P) (Pinr : B → P)
(Pglue : Pinl pt = Pinr pt) : ap (wedge.elim Pinl Pinr Pglue) wedge.glue = Pglue :=
!pushout.elim_glue
end wedge
attribute wedge.rec wedge.elim [recursor 7] [unfold 7]
namespace wedge
-- TODO maybe find a cleaner proof
protected definition unit (A : Type*) : A ≃* wedge punit A :=
begin
fapply pequiv_of_pmap,
{ fapply pmap.mk, intro a, apply pinr a, apply respect_pt },
{ fapply is_equiv.adjointify, intro x, fapply pushout.elim_on x,
exact λ x, Point A, exact id, intro u, reflexivity,
intro x, fapply pushout.rec_on x, intro u, cases u, esimp, apply wedge.glue⁻¹,
intro a, reflexivity,
intro u, cases u, esimp, apply eq_pathover,
refine _ ⬝hp !ap_id⁻¹, fapply eq_hconcat, apply ap_compose inr,
krewrite elim_glue, fapply eq_hconcat, apply ap_idp, apply square_of_eq,
apply con.left_inv,
intro a, reflexivity},
end
end wedge
open trunc is_trunc is_conn function
namespace wedge_extension
section
-- The wedge connectivity lemma (Lemma 8.6.2)
parameters {A B : Type*} (n m : )
[cA : is_conn n A] [cB : is_conn m B]
(P : A → B → Type) [HP : Πa b, is_trunc (m + n) (P a b)]
(f : Πa : A, P a pt)
(g : Πb : B, P pt b)
(p : f pt = g pt)
include cA cB HP
private definition Q (a : A) : Type :=
fiber (λs : (Πb : B, P a b), s (Point B)) (f a)
private definition is_trunc_Q (a : A) : is_trunc (n.-1) (Q a) :=
begin
refine @is_conn.elim_general (m.-1) _ _ _ (P a) _ (f a),
rewrite [-succ_add_succ, of_nat_add_of_nat], intro b, apply HP
end
local attribute is_trunc_Q [instance]
private definition Q_sec : Πa : A, Q a :=
is_conn.elim (n.-1) Q (fiber.mk g p⁻¹)
protected definition ext : Π(a : A)(b : B), P a b :=
λa, fiber.point (Q_sec a)
protected definition β_left (a : A) : ext a (Point B) = f a :=
fiber.point_eq (Q_sec a)
private definition coh_aux : Σq : ext (Point A) = g,
β_left (Point A) = ap (λs : (Πb : B, P (Point A) b), s (Point B)) q ⬝ p⁻¹ :=
equiv.to_fun (fiber.fiber_eq_equiv (Q_sec (Point A)) (fiber.mk g p⁻¹))
(is_conn.elim_β (n.-1) Q (fiber.mk g p⁻¹))
protected definition β_right (b : B) : ext (Point A) b = g b :=
apd10 (sigma.pr1 coh_aux) b
private definition lem : β_left (Point A) = β_right (Point B) ⬝ p⁻¹ :=
begin
unfold β_right, unfold β_left,
krewrite (apd10_eq_ap_eval (sigma.pr1 coh_aux) (Point B)),
exact sigma.pr2 coh_aux,
end
protected definition coh
: (β_left (Point A))⁻¹ ⬝ β_right (Point B) = p :=
by rewrite [lem,con_inv,inv_inv,con.assoc,con.left_inv]
end
end wedge_extension