lean2/hott/types/sum.hlean
Floris van Doorn 5cacebcf86 feat(hott): replace assert by have and merge namespace equiv.ops into equiv
The coercion A ≃ B -> (A -> B) is now in namespace equiv. The notation ⁻¹ for symmetry of equivalences is not supported anymore. Use ⁻¹ᵉ
2016-03-03 10:13:21 -08:00

384 lines
15 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Theorems about sums/coproducts/disjoint unions
-/
import .pi .equiv logic
open lift eq is_equiv equiv prod prod.ops is_trunc sigma bool
namespace sum
universe variables u v u' v'
variables {A : Type.{u}} {B : Type.{v}} (z z' : A + B) {P : A → Type.{u'}} {Q : A → Type.{v'}}
protected definition eta : sum.rec inl inr z = z :=
by induction z; all_goals reflexivity
protected definition code [unfold 3 4] : A + B → A + B → Type.{max u v}
| code (inl a) (inl a') := lift (a = a')
| code (inr b) (inr b') := lift (b = b')
| code _ _ := lift empty
protected definition decode [unfold 3 4] : Π(z z' : A + B), sum.code z z' → z = z'
| decode (inl a) (inl a') := λc, ap inl (down c)
| decode (inl a) (inr b') := λc, empty.elim (down c) _
| decode (inr b) (inl a') := λc, empty.elim (down c) _
| decode (inr b) (inr b') := λc, ap inr (down c)
protected definition mem_cases : (Σ a, z = inl a) + (Σ b, z = inr b) :=
by cases z with a b; exact inl ⟨a, idp⟩; exact inr ⟨b, idp⟩
protected definition eqrec {A B : Type} {C : A + B → Type}
(x : A + B) (cl : Π a, x = inl a → C (inl a)) (cr : Π b, x = inr b → C (inr b)) : C x :=
by cases x with a b; exact cl a idp; exact cr b idp
variables {z z'}
protected definition encode [unfold 3 4 5] (p : z = z') : sum.code z z' :=
by induction p; induction z; all_goals exact up idp
variables (z z')
definition sum_eq_equiv [constructor] : (z = z') ≃ sum.code z z' :=
equiv.MK sum.encode
!sum.decode
abstract begin
intro c, induction z with a b, all_goals induction z' with a' b',
all_goals (esimp at *; induction c with c),
all_goals induction c, -- c either has type empty or a path
all_goals reflexivity
end end
abstract begin
intro p, induction p, induction z, all_goals reflexivity
end end
section
variables {a a' : A} {b b' : B}
definition eq_of_inl_eq_inl [unfold 5] (p : inl a = inl a' :> A + B) : a = a' :=
down (sum.encode p)
definition eq_of_inr_eq_inr [unfold 5] (p : inr b = inr b' :> A + B) : b = b' :=
down (sum.encode p)
definition empty_of_inl_eq_inr (p : inl a = inr b) : empty := down (sum.encode p)
definition empty_of_inr_eq_inl (p : inr b = inl a) : empty := down (sum.encode p)
/- Transport -/
definition sum_transport (p : a = a') (z : P a + Q a)
: p ▸ z = sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z :=
by induction p; induction z; all_goals reflexivity
/- Pathovers -/
definition etao (p : a = a') (z : P a + Q a)
: z =[p] sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z :=
by induction p; induction z; all_goals constructor
protected definition codeo (p : a = a') : P a + Q a → P a' + Q a' → Type.{max u' v'}
| codeo (inl x) (inl x') := lift.{u' v'} (x =[p] x')
| codeo (inr y) (inr y') := lift.{v' u'} (y =[p] y')
| codeo _ _ := lift empty
protected definition decodeo (p : a = a') : Π(z : P a + Q a) (z' : P a' + Q a'),
sum.codeo p z z' → z =[p] z'
| decodeo (inl x) (inl x') := λc, apo (λa, inl) (down c)
| decodeo (inl x) (inr y') := λc, empty.elim (down c) _
| decodeo (inr y) (inl x') := λc, empty.elim (down c) _
| decodeo (inr y) (inr y') := λc, apo (λa, inr) (down c)
variables {z z'}
protected definition encodeo {p : a = a'} {z : P a + Q a} {z' : P a' + Q a'} (q : z =[p] z')
: sum.codeo p z z' :=
by induction q; induction z; all_goals exact up idpo
variables (z z')
definition sum_pathover_equiv [constructor] (p : a = a') (z : P a + Q a) (z' : P a' + Q a')
: (z =[p] z') ≃ sum.codeo p z z' :=
equiv.MK sum.encodeo
!sum.decodeo
abstract begin
intro c, induction z with a b, all_goals induction z' with a' b',
all_goals (esimp at *; induction c with c),
all_goals induction c, -- c either has type empty or a pathover
all_goals reflexivity
end end
abstract begin
intro q, induction q, induction z, all_goals reflexivity
end end
end
/- Functorial action -/
variables {A' B' : Type} (f : A → A') (g : B → B')
definition sum_functor [unfold 7] : A + B → A' + B'
| sum_functor (inl a) := inl (f a)
| sum_functor (inr b) := inr (g b)
/- Equivalences -/
definition is_equiv_sum_functor [constructor] [Hf : is_equiv f] [Hg : is_equiv g]
: is_equiv (sum_functor f g) :=
adjointify (sum_functor f g)
(sum_functor f⁻¹ g⁻¹)
abstract begin
intro z, induction z,
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
end end
abstract begin
intro z, induction z,
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
end end
definition sum_equiv_sum_of_is_equiv [constructor] [Hf : is_equiv f] [Hg : is_equiv g]
: A + B ≃ A' + B' :=
equiv.mk _ (is_equiv_sum_functor f g)
definition sum_equiv_sum [constructor] (f : A ≃ A') (g : B ≃ B') : A + B ≃ A' + B' :=
equiv.mk _ (is_equiv_sum_functor f g)
definition sum_equiv_sum_left [constructor] (g : B ≃ B') : A + B ≃ A + B' :=
sum_equiv_sum equiv.refl g
definition sum_equiv_sum_right [constructor] (f : A ≃ A') : A + B ≃ A' + B :=
sum_equiv_sum f equiv.refl
definition flip [unfold 3] : A + B → B + A
| flip (inl a) := inr a
| flip (inr b) := inl b
definition sum_comm_equiv [constructor] (A B : Type) : A + B ≃ B + A :=
begin
fapply equiv.MK,
exact flip,
exact flip,
all_goals (intro z; induction z; all_goals reflexivity)
end
definition sum_assoc_equiv [constructor] (A B C : Type) : A + (B + C) ≃ (A + B) + C :=
begin
fapply equiv.MK,
all_goals try (intro z; induction z with u v;
all_goals try induction u; all_goals try induction v),
exact inl (inl u),
exact inl (inr a),
exact inr a,
exact inl a,
exact inr (inl a),
exact inr (inr v),
all_goals reflexivity
end
definition sum_empty_equiv [constructor] (A : Type) : A + empty ≃ A :=
begin
fapply equiv.MK,
{ intro z, induction z, assumption, contradiction},
{ exact inl},
{ intro a, reflexivity},
{ intro z, induction z, reflexivity, contradiction}
end
definition empty_sum_equiv (A : Type) : empty + A ≃ A :=
!sum_comm_equiv ⬝e !sum_empty_equiv
definition bool_equiv_unit_sum_unit : bool ≃ unit + unit :=
begin
fapply equiv.MK,
{ intro b, cases b, exact inl unit.star, exact inr unit.star },
{ intro s, cases s, exact bool.ff, exact bool.tt },
{ intro s, cases s, do 2 (cases a; reflexivity) },
{ intro b, cases b, do 2 reflexivity },
end
definition sum_prod_right_distrib [constructor] (A B C : Type) :
(A + B) × C ≃ (A × C) + (B × C) :=
begin
fapply equiv.MK,
{ intro x, cases x with ab c, cases ab with a b, exact inl (a, c), exact inr (b, c) },
{ intro x, cases x with ac bc, cases ac with a c, exact (inl a, c),
cases bc with b c, exact (inr b, c) },
{ intro x, cases x with ac bc, cases ac with a c, reflexivity, cases bc, reflexivity },
{ intro x, cases x with ab c, cases ab with a b, do 2 reflexivity }
end
definition sum_prod_left_distrib [constructor] (A B C : Type) :
A × (B + C) ≃ (A × B) + (A × C) :=
calc A × (B + C) ≃ (B + C) × A : prod_comm_equiv
... ≃ (B × A) + (C × A) : sum_prod_right_distrib
... ≃ (A × B) + (C × A) : sum_equiv_sum_right !prod_comm_equiv
... ≃ (A × B) + (A × C) : sum_equiv_sum_left !prod_comm_equiv
section
variables (H : unit + A ≃ unit + B)
include H
open unit decidable sigma.ops
definition unit_sum_equiv_cancel_map : A → B :=
begin
intro a, cases sum.mem_cases (H (inr a)) with u b, rotate 1, exact b.1,
cases u with u Hu, cases sum.mem_cases (H (inl ⋆)) with u' b, rotate 1, exact b.1,
cases u' with u' Hu', exfalso, apply empty_of_inl_eq_inr,
calc inl ⋆ = H⁻¹ (H (inl ⋆)) : (to_left_inv H (inl ⋆))⁻¹
... = H⁻¹ (inl u') : {Hu'}
... = H⁻¹ (inl u) : is_prop.elim
... = H⁻¹ (H (inr a)) : {Hu⁻¹}
... = inr a : to_left_inv H (inr a)
end
definition unit_sum_equiv_cancel_inv (b : B) :
unit_sum_equiv_cancel_map H (unit_sum_equiv_cancel_map H⁻¹ᵉ b) = b :=
begin
esimp[unit_sum_equiv_cancel_map], apply sum.rec,
{ intro x, cases x with u Hu, esimp, apply sum.rec,
{ intro x, exfalso, cases x with u' Hu', apply empty_of_inl_eq_inr,
calc inl ⋆ = H⁻¹ (H (inl ⋆)) : (to_left_inv H (inl ⋆))⁻¹
... = H⁻¹ (inl u') : ap H⁻¹ Hu'
... = H⁻¹ (inl u) : {!is_prop.elim}
... = H⁻¹ (H (inr _)) : {Hu⁻¹}
... = inr _ : to_left_inv H },
{ intro x, cases x with b' Hb', esimp, cases sum.mem_cases (H⁻¹ (inr b)) with x x,
{ cases x with u' Hu', cases u', apply eq_of_inr_eq_inr,
calc inr b' = H (inl ⋆) : Hb'⁻¹
... = H (H⁻¹ (inr b)) : (ap (to_fun H) Hu')⁻¹
... = inr b : to_right_inv H (inr b)},
{ exfalso, cases x with a Ha, apply empty_of_inl_eq_inr,
cases u, apply concat, apply Hu⁻¹, apply concat, rotate 1, apply !(to_right_inv H),
apply ap (to_fun H),
apply concat, rotate 1, apply Ha⁻¹, apply ap inr, esimp,
apply sum.rec, intro x, exfalso, apply empty_of_inl_eq_inr,
apply concat, exact x.2⁻¹, apply Ha,
intro x, cases x with a' Ha', esimp, apply eq_of_inr_eq_inr, apply Ha'⁻¹ ⬝ Ha } } },
{ intro x, cases x with b' Hb', esimp, apply eq_of_inr_eq_inr, refine Hb'⁻¹ ⬝ _,
cases sum.mem_cases (to_fun H⁻¹ᵉ (inr b)) with x x,
{ cases x with u Hu, esimp, cases sum.mem_cases (to_fun H⁻¹ᵉ (inl ⋆)) with x x,
{ cases x with u' Hu', exfalso, apply empty_of_inl_eq_inr,
calc inl ⋆ = H (H⁻¹ (inl ⋆)) : (to_right_inv H (inl ⋆))⁻¹
... = H (inl u') : ap H Hu'
... = H (inl u) : by rewrite [is_prop.elim u' u]
... = H (H⁻¹ᵉ (inr b)) : ap H Hu⁻¹
... = inr b : to_right_inv H (inr b) },
{ cases x with a Ha, exfalso, apply empty_of_inl_eq_inr,
apply concat, rotate 1, exact Hb',
have Ha' : inl ⋆ = H (inr a), by apply !(to_right_inv H)⁻¹ ⬝ ap H Ha,
apply concat Ha', apply ap H, apply ap inr, apply sum.rec,
intro x, cases x with u' Hu', esimp, apply sum.rec,
intro x, cases x with u'' Hu'', esimp, apply empty.rec,
intro x, cases x with a'' Ha'', esimp, krewrite Ha' at Ha'', apply eq_of_inr_eq_inr,
apply !(to_left_inv H)⁻¹ ⬝ Ha'',
intro x, exfalso, cases x with a'' Ha'', apply empty_of_inl_eq_inr,
apply Hu⁻¹ ⬝ Ha'', } },
{ cases x with a' Ha', esimp, refine _ ⬝ !(to_right_inv H), apply ap H,
apply Ha'⁻¹ } }
end
definition unit_sum_equiv_cancel : A ≃ B :=
begin
fapply equiv.MK, apply unit_sum_equiv_cancel_map H,
apply unit_sum_equiv_cancel_map H⁻¹ᵉ,
intro b, apply unit_sum_equiv_cancel_inv,
{ intro a, have H = (H⁻¹ᵉ)⁻¹ᵉ, from !equiv.symm_symm⁻¹, rewrite this at {2},
apply unit_sum_equiv_cancel_inv }
end
end
/- universal property -/
definition sum_rec_unc [unfold 5] {P : A + B → Type} (fg : (Πa, P (inl a)) × (Πb, P (inr b)))
: Πz, P z :=
sum.rec fg.1 fg.2
definition is_equiv_sum_rec [constructor] (P : A + B → Type)
: is_equiv (sum_rec_unc : (Πa, P (inl a)) × (Πb, P (inr b)) → Πz, P z) :=
begin
apply adjointify sum_rec_unc (λf, (λa, f (inl a), λb, f (inr b))),
intro f, apply eq_of_homotopy, intro z, focus (induction z; all_goals reflexivity),
intro h, induction h with f g, reflexivity
end
definition equiv_sum_rec [constructor] (P : A + B → Type)
: (Πa, P (inl a)) × (Πb, P (inr b)) ≃ Πz, P z :=
equiv.mk _ !is_equiv_sum_rec
definition imp_prod_imp_equiv_sum_imp [constructor] (A B C : Type)
: (A → C) × (B → C) ≃ (A + B → C) :=
!equiv_sum_rec
/- truncatedness -/
variables (A B)
theorem is_trunc_sum (n : trunc_index) [HA : is_trunc (n.+2) A] [HB : is_trunc (n.+2) B]
: is_trunc (n.+2) (A + B) :=
begin
apply is_trunc_succ_intro, intro z z',
apply is_trunc_equiv_closed_rev, apply sum_eq_equiv,
induction z with a b, all_goals induction z' with a' b', all_goals esimp,
all_goals exact _,
end
theorem is_trunc_sum_excluded (n : trunc_index) [HA : is_trunc n A] [HB : is_trunc n B]
(H : A → B → empty) : is_trunc n (A + B) :=
begin
induction n with n IH,
{ exfalso, exact H !center !center},
{ clear IH, induction n with n IH,
{ apply is_prop.mk, intros x y,
induction x, all_goals induction y, all_goals esimp,
all_goals try (exfalso;apply H;assumption;assumption), all_goals apply ap _ !is_prop.elim},
{ apply is_trunc_sum}}
end
variable {B}
definition is_contr_sum_left [HA : is_contr A] (H : ¬B) : is_contr (A + B) :=
is_contr.mk (inl !center)
(λx, sum.rec_on x (λa, ap inl !center_eq) (λb, empty.elim (H b)))
/-
Sums are equivalent to dependent sigmas where the first component is a bool.
The current construction only works for A and B in the same universe.
If we need it for A and B in different universes, we need to insert some lifts.
-/
definition sum_of_sigma_bool {A B : Type.{u}} (v : Σ(b : bool), bool.rec A B b) : A + B :=
by induction v with b x; induction b; exact inl x; exact inr x
definition sigma_bool_of_sum {A B : Type.{u}} (z : A + B) : Σ(b : bool), bool.rec A B b :=
by induction z with a b; exact ⟨ff, a⟩; exact ⟨tt, b⟩
definition sum_equiv_sigma_bool [constructor] (A B : Type.{u})
: A + B ≃ Σ(b : bool), bool.rec A B b :=
equiv.MK sigma_bool_of_sum
sum_of_sigma_bool
begin intro v, induction v with b x, induction b, all_goals reflexivity end
begin intro z, induction z with a b, all_goals reflexivity end
end sum
open sum pi
namespace decidable
definition decidable_equiv [constructor] (A : Type) : decidable A ≃ A + ¬A :=
begin
fapply equiv.MK:intro a;induction a:try (constructor;assumption;now),
all_goals reflexivity
end
definition is_trunc_decidable [constructor] (A : Type) (n : trunc_index) [H : is_trunc n A] :
is_trunc n (decidable A) :=
begin
apply is_trunc_equiv_closed_rev,
apply decidable_equiv,
induction n with n IH,
{ apply is_contr_sum_left, exact λna, na !center},
{ apply is_trunc_sum_excluded, exact λa na, na a}
end
end decidable
attribute sum.is_trunc_sum [instance] [priority 1480]
definition tsum [constructor] {n : trunc_index} (A B : (n.+2)-Type) : (n.+2)-Type :=
trunctype.mk (A + B) _
infixr `+t`:25 := tsum