064ecd3e3d
We also define key theorems that will be used to generate the automatically generated a well-founded subterm relation for inductive datatypes. We also prove decidability and wf theorems asap.
60 lines
2.5 KiB
Text
60 lines
2.5 KiB
Text
import data.nat data.prod logic.wf_k
|
||
open nat well_founded decidable prod eq.ops
|
||
|
||
-- I use "dependent" if-then-else to be able to communicate the if-then-else condition
|
||
-- to the branches
|
||
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
|
||
decidable.rec_on H (assume Hc, t Hc) (assume Hnc, e Hnc)
|
||
|
||
notation `dif` c `then` t:45 `else` e:45 := dite c t e
|
||
|
||
-- Auxiliary lemma used to justify recursive call
|
||
private lemma lt_aux {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x :=
|
||
have y0 : 0 < y, from and.elim_left H,
|
||
have x0 : 0 < x, from lt_le.trans y0 (and.elim_right H),
|
||
sub_lt x0 y0
|
||
|
||
definition wdiv.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
|
||
dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y) (lt_aux Hp) y + 1) else (λ Hn, zero)
|
||
|
||
definition wdiv (x y : nat) :=
|
||
fix wdiv.F x y
|
||
|
||
theorem wdiv_def (x y : nat) : wdiv x y = if 0 < y ∧ y ≤ x then wdiv (x - y) y + 1 else 0 :=
|
||
congr_fun (well_founded.fix_eq wdiv.F x) y
|
||
|
||
-- There is a little bit of cheating in the definition above.
|
||
-- I avoid the packing/unpacking into tuples.
|
||
-- The actual definitional package would not do that.
|
||
-- It will always pack things.
|
||
|
||
definition pair_nat.lt := lex lt lt -- Could also be (lex lt empty_rel)
|
||
definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt :=
|
||
intro_k (prod.lex.wf lt.wf lt.wf) 20 -- allow 20 recursive calls without computing with proofs
|
||
infixl `≺`:50 := pair_nat.lt
|
||
|
||
-- Recursive lemma used to justify recursive call
|
||
private lemma plt_aux (p : nat × nat) (H : 0 < pr₂ p ∧ pr₂ p ≤ pr₁ p) : (pr₁ p - pr₂ p, pr₂ p) ≺ p :=
|
||
have aux₁ : pr₁ p - pr₂ p < pr₁ p, from lt_aux H,
|
||
have aux₂ : (pr₁ p - pr₂ p, pr₂ p) ≺ (pr₁ p, pr₂ p), from !lex.left aux₁,
|
||
prod.eta p ▸ aux₂
|
||
|
||
definition pdiv.F (p₁ : nat × nat) (f : Π p₂ : nat × nat, p₂ ≺ p₁ → nat) : nat :=
|
||
let x := pr₁ p₁ in
|
||
let y := pr₂ p₁ in
|
||
dif 0 < y ∧ y ≤ x then (λ Hp, f (x - y, y) (plt_aux p₁ Hp) + 1) else (λ Hnp, zero)
|
||
|
||
definition pdiv (x y : nat) :=
|
||
fix pdiv.F (x, y)
|
||
|
||
theorem pdiv_def (x y : nat) : pdiv x y = if 0 < y ∧ y ≤ x then pdiv (x - y) y + 1 else zero :=
|
||
well_founded.fix_eq pdiv.F (x, y)
|
||
|
||
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
||
-- I used that, when I wrote div_def and pdiv_def.
|
||
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) :
|
||
dite c (λ Hc, t) (λ Hnc, e) = ite c t e :=
|
||
rfl
|
||
|
||
example : pdiv 398 23 = 17 :=
|
||
rfl
|