e51c4ad2e9
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
19 lines
534 B
Text
19 lines
534 B
Text
import logic
|
||
open tactic
|
||
|
||
definition my_tac1 := apply @refl
|
||
definition my_tac2 := repeat (apply @and_intro; assumption)
|
||
|
||
tactic_hint my_tac1
|
||
tactic_hint my_tac2
|
||
|
||
theorem T1 {A : Type.{2}} (a : A) : a = a
|
||
|
||
theorem T2 {a b c : Prop} (Ha : a) (Hb : b) (Hc : c) : a ∧ b ∧ c
|
||
|
||
definition my_tac3 := fixpoint (λ f, [apply @or_intro_left; f |
|
||
apply @or_intro_right; f |
|
||
assumption])
|
||
|
||
tactic_hint [or] my_tac3
|
||
theorem T3 {a b c : Prop} (Hb : b) : a ∨ b ∨ c
|