212 lines
7 KiB
Text
212 lines
7 KiB
Text
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Authors: Floris van Doorn, Jakob von Raumer
|
||
|
||
import .basic types.pi
|
||
|
||
open function precategory eq prod equiv is_equiv sigma sigma.ops truncation
|
||
open pi
|
||
|
||
structure functor (C D : Precategory) : Type :=
|
||
(obF : C → D)
|
||
(homF : Π ⦃a b : C⦄, hom a b → hom (obF a) (obF b))
|
||
(respect_id : Π (a : C), homF (ID a) = ID (obF a))
|
||
(respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b),
|
||
homF (g ∘ f) = homF g ∘ homF f)
|
||
|
||
infixl `⇒`:25 := functor
|
||
|
||
namespace functor
|
||
variables {C D E : Precategory}
|
||
|
||
coercion [persistent] obF
|
||
coercion [persistent] homF
|
||
|
||
-- "functor C D" is equivalent to a certain sigma type
|
||
set_option unifier.max_steps 38500
|
||
protected definition sigma_char :
|
||
(Σ (obF : C → D)
|
||
(homF : Π ⦃a b : C⦄, hom a b → hom (obF a) (obF b)),
|
||
(Π (a : C), homF (ID a) = ID (obF a)) ×
|
||
(Π {a b c : C} (g : hom b c) (f : hom a b),
|
||
homF (g ∘ f) = homF g ∘ homF f)) ≃ (functor C D) :=
|
||
begin
|
||
fapply equiv.mk,
|
||
intro S, fapply functor.mk,
|
||
exact (S.1), exact (S.2.1),
|
||
exact (pr₁ S.2.2), exact (pr₂ S.2.2),
|
||
fapply adjointify,
|
||
intro F, apply (functor.rec_on F), intros (d1, d2, d3, d4),
|
||
exact (sigma.mk d1 (sigma.mk d2 (pair d3 (@d4)))),
|
||
intro F, apply (functor.rec_on F), intros (d1, d2, d3, d4), apply idp,
|
||
intro S, apply (sigma.rec_on S), intros (d1, S2),
|
||
apply (sigma.rec_on S2), intros (d2, P1),
|
||
apply (prod.rec_on P1), intros (d3, d4), apply idp,
|
||
end
|
||
|
||
-- The following lemmas will later be used to prove that the type of
|
||
-- precategories formes a precategory itself
|
||
protected definition compose (G : functor D E) (F : functor C D) : functor C E :=
|
||
functor.mk
|
||
(λ x, G (F x))
|
||
(λ a b f, G (F f))
|
||
(λ a, calc
|
||
G (F (ID a)) = G (ID (F a)) : {respect_id F a}
|
||
... = ID (G (F a)) : respect_id G (F a))
|
||
(λ a b c g f, calc
|
||
G (F (g ∘ f)) = G (F g ∘ F f) : respect_comp F g f
|
||
... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f))
|
||
|
||
infixr `∘f`:60 := compose
|
||
|
||
|
||
|
||
protected theorem congr
|
||
{C : Precategory} {D : Precategory}
|
||
(F : C → D)
|
||
(foo2 : Π ⦃a b : C⦄, hom a b → hom (F a) (F b))
|
||
(foo3a foo3b : Π (a : C), foo2 (ID a) = ID (F a))
|
||
(foo4a foo4b : Π {a b c : C} (g : @hom C C b c) (f : @hom C C a b),
|
||
foo2 (g ∘ f) = foo2 g ∘ foo2 f)
|
||
(p3 : foo3a = foo3b) (p4 : @foo4a = @foo4b)
|
||
: functor.mk F foo2 foo3a @foo4a = functor.mk F foo2 foo3b @foo4b
|
||
:=
|
||
begin
|
||
apply (eq.rec_on p3), intros,
|
||
apply (eq.rec_on p4), intros,
|
||
apply idp,
|
||
end
|
||
|
||
protected theorem assoc {A B C D : Precategory} (H : functor C D) (G : functor B C) (F : functor A B) :
|
||
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
|
||
begin
|
||
apply (functor.rec_on H), intros (H1, H2, H3, H4),
|
||
apply (functor.rec_on G), intros (G1, G2, G3, G4),
|
||
apply (functor.rec_on F), intros (F1, F2, F3, F4),
|
||
fapply functor.congr,
|
||
apply funext.path_pi, intro a,
|
||
apply (@is_hset.elim), apply !homH,
|
||
apply funext.path_pi, intro a,
|
||
repeat (apply funext.path_pi; intros),
|
||
apply (@is_hset.elim), apply !homH,
|
||
end
|
||
|
||
protected definition id {C : Precategory} : functor C C :=
|
||
mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp)
|
||
|
||
protected definition ID (C : Precategory) : functor C C := id
|
||
|
||
protected theorem id_left (F : functor C D) : id ∘f F = F :=
|
||
begin
|
||
apply (functor.rec_on F), intros (F1, F2, F3, F4),
|
||
fapply functor.congr,
|
||
apply funext.path_pi, intro a,
|
||
apply (@is_hset.elim), apply !homH,
|
||
repeat (apply funext.path_pi; intros),
|
||
apply (@is_hset.elim), apply !homH,
|
||
end
|
||
|
||
protected theorem id_right (F : functor C D) : F ∘f id = F :=
|
||
begin
|
||
apply (functor.rec_on F), intros (F1, F2, F3, F4),
|
||
fapply functor.congr,
|
||
apply funext.path_pi, intro a,
|
||
apply (@is_hset.elim), apply !homH,
|
||
repeat (apply funext.path_pi; intros),
|
||
apply (@is_hset.elim), apply !homH,
|
||
end
|
||
|
||
end functor
|
||
|
||
|
||
namespace category
|
||
open functor
|
||
|
||
definition precategory_of_precategories : precategory Precategory :=
|
||
mk (λ a b, functor a b)
|
||
sorry -- TODO: Show that functors form a set?
|
||
(λ a b c g f, functor.compose g f)
|
||
(λ a, functor.id)
|
||
(λ a b c d h g f, !functor.assoc)
|
||
(λ a b f, !functor.id_left)
|
||
(λ a b f, !functor.id_right)
|
||
|
||
definition Precategory_of_categories := Mk precategory_of_precategories
|
||
|
||
namespace ops
|
||
|
||
notation `PreCat`:max := Precategory_of_categories
|
||
instance [persistent] precategory_of_precategories
|
||
|
||
end ops
|
||
|
||
end category
|
||
|
||
namespace functor
|
||
-- open category.ops
|
||
-- universes l m
|
||
variables {C D : Precategory}
|
||
-- check hom C D
|
||
-- variables (F : C ⟶ D) (G : D ⇒ C)
|
||
-- check G ∘ F
|
||
-- check F ∘f G
|
||
-- variables (a b : C) (f : a ⟶ b)
|
||
-- check F a
|
||
-- check F b
|
||
-- check F f
|
||
-- check G (F f)
|
||
-- print "---"
|
||
-- -- check (G ∘ F) f --error
|
||
-- check (λ(x : functor C C), x) (G ∘ F) f
|
||
-- check (G ∘f F) f
|
||
-- print "---"
|
||
-- -- check (G ∘ F) a --error
|
||
-- check (G ∘f F) a
|
||
-- print "---"
|
||
-- -- check λ(H : hom C D) (x : C), H x --error
|
||
-- check λ(H : @hom _ Cat C D) (x : C), H x
|
||
-- check λ(H : C ⇒ D) (x : C), H x
|
||
-- print "---"
|
||
-- -- variables {obF obG : C → D} (Hob : ∀x, obF x = obG x) (homF : Π(a b : C) (f : a ⟶ b), obF a ⟶ obF b) (homG : Π(a b : C) (f : a ⟶ b), obG a ⟶ obG b)
|
||
-- -- check eq.rec_on (funext Hob) homF = homG
|
||
|
||
/-theorem mk_heq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x)
|
||
(Hmor : ∀(a b : C) (f : a ⟶ b), homF a b f == homG a b f)
|
||
: mk obF homF idF compF = mk obG homG idG compG :=
|
||
hddcongr_arg4 mk
|
||
(funext Hob)
|
||
(hfunext (λ a, hfunext (λ b, hfunext (λ f, !Hmor))))
|
||
!proof_irrel
|
||
!proof_irrel
|
||
|
||
protected theorem hequal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x)
|
||
(Hmor : ∀a b (f : a ⟶ b), F f == G f), F = G :=
|
||
functor.rec
|
||
(λ obF homF idF compF,
|
||
functor.rec
|
||
(λ obG homG idG compG Hob Hmor, mk_heq Hob Hmor)
|
||
G)
|
||
F-/
|
||
|
||
-- theorem mk_eq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x)
|
||
-- (Hmor : ∀(a b : C) (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (homF a b f)
|
||
-- = homG a b f)
|
||
-- : mk obF homF idF compF = mk obG homG idG compG :=
|
||
-- dcongr_arg4 mk
|
||
-- (funext Hob)
|
||
-- (funext (λ a, funext (λ b, funext (λ f, sorry ⬝ Hmor a b f))))
|
||
-- -- to fill this sorry use (a generalization of) cast_pull
|
||
-- !proof_irrel
|
||
-- !proof_irrel
|
||
|
||
-- protected theorem equal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x)
|
||
-- (Hmor : ∀a b (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (F f) = G f), F = G :=
|
||
-- functor.rec
|
||
-- (λ obF homF idF compF,
|
||
-- functor.rec
|
||
-- (λ obG homG idG compG Hob Hmor, mk_eq Hob Hmor)
|
||
-- G)
|
||
-- F
|
||
|
||
|
||
end functor
|