lean2/library/init/prod.lean
Leonardo de Moura 1b414d36e7 refactor(library/init): define prod as an inductive datatype
Motivation: prod is used internally in the definitional package.
If we define prod as a structure, then Lean will tag pr1 and pr2 as
projections. This creates problems when we add special support for
projections in the elaborator. The heuristics avoid some case-splits
that are currently performed, and without them some files break.
2015-06-25 17:59:06 -07:00

96 lines
3.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura, Jeremy Avigad
-/
prelude
import init.num init.wf
definition pair := @prod.mk
notation A × B := prod A B
-- notation for n-ary tuples
notation `(` h `,` t:(foldl `,` (e r, prod.mk r e) h) `)` := t
namespace prod
notation A * B := prod A B
notation A × B := prod A B -- repeat, so this takes precedence
namespace low_precedence_times
reserve infixr `*`:30 -- conflicts with notation for multiplication
infixr `*` := prod
end low_precedence_times
notation `pr₁` := pr1
notation `pr₂` := pr2
namespace ops
postfix `.1`:(max+1) := pr1
postfix `.2`:(max+1) := pr2
end ops
definition destruct [reducible] := @prod.cases_on
section
variables {A B : Type}
lemma pr1.mk (a : A) (b : B) : pr1 (mk a b) = a := rfl
lemma pr2.mk (a : A) (b : B) : pr2 (mk a b) = b := rfl
lemma eta : ∀ (p : A × B), mk (pr1 p) (pr2 p) = p
| (a, b) := rfl
end
open well_founded
section
variables {A B : Type}
variable (Ra : A → A → Prop)
variable (Rb : B → B → Prop)
-- Lexicographical order based on Ra and Rb
inductive lex : A × B → A × B → Prop :=
| left : ∀{a₁ b₁} a₂ b₂, Ra a₁ a₂ → lex (a₁, b₁) (a₂, b₂)
| right : ∀a {b₁ b₂}, Rb b₁ b₂ → lex (a, b₁) (a, b₂)
-- Relational product based on Ra and Rb
inductive rprod : A × B → A × B → Prop :=
intro : ∀{a₁ b₁ a₂ b₂}, Ra a₁ a₂ → Rb b₁ b₂ → rprod (a₁, b₁) (a₂, b₂)
end
section
parameters {A B : Type}
parameters {Ra : A → A → Prop} {Rb : B → B → Prop}
local infix `≺`:50 := lex Ra Rb
definition lex.accessible {a} (aca : acc Ra a) (acb : ∀b, acc Rb b): ∀b, acc (lex Ra Rb) (a, b) :=
acc.rec_on aca
(λxa aca (iHa : ∀y, Ra y xa → ∀b, acc (lex Ra Rb) (y, b)),
λb, acc.rec_on (acb b)
(λxb acb
(iHb : ∀y, Rb y xb → acc (lex Ra Rb) (xa, y)),
acc.intro (xa, xb) (λp (lt : p ≺ (xa, xb)),
have aux : xa = xa → xb = xb → acc (lex Ra Rb) p, from
@prod.lex.rec_on A B Ra Rb (λp₁ p₂, pr₁ p₂ = xa → pr₂ p₂ = xb → acc (lex Ra Rb) p₁)
p (xa, xb) lt
(λa₁ b₁ a₂ b₂ (H : Ra a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b₂ = xb),
show acc (lex Ra Rb) (a₁, b₁), from
have Ra₁ : Ra a₁ xa, from eq.rec_on eq₂ H,
iHa a₁ Ra₁ b₁)
(λa b₁ b₂ (H : Rb b₁ b₂) (eq₂ : a = xa) (eq₃ : b₂ = xb),
show acc (lex Ra Rb) (a, b₁), from
have Rb₁ : Rb b₁ xb, from eq.rec_on eq₃ H,
have eq₂' : xa = a, from eq.rec_on eq₂ rfl,
eq.rec_on eq₂' (iHb b₁ Rb₁)),
aux rfl rfl)))
-- The lexicographical order of well founded relations is well-founded
definition lex.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (lex Ra Rb) :=
well_founded.intro (λp, destruct p (λa b, lex.accessible (Ha a) (well_founded.apply Hb) b))
-- Relational product is a subrelation of the lex
definition rprod.sub_lex : ∀ a b, rprod Ra Rb a b → lex Ra Rb a b :=
λa b H, prod.rprod.rec_on H (λ a₁ b₁ a₂ b₂ H₁ H₂, lex.left Rb a₂ b₂ H₁)
-- The relational product of well founded relations is well-founded
definition rprod.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (rprod Ra Rb) :=
subrelation.wf (rprod.sub_lex) (lex.wf Ha Hb)
end
end prod